期刊文献+

正整数伸缩的双正交双向小波包(英文) 被引量:2

Biorthogonal Two-direction Wavelet Packets with a Positive Integer Dilation Factor
下载PDF
导出
摘要 本文引入了尺度为α的双正交双向小波包的概念,运用矩阵理论和算子理论研究了双正交双向小波包的性质。得到构造双正交双向小波包的一种新方法。建立了进行迭代与分解的公式。利用双正交双向小波包,得到空间L^2(R)新的Riesz基。最后,给出构造双正交双向小波包的例子。 Biorthogonal two-direction wavelet packets with dilation factor are introduced and their properties are discussed by means of the matrix theory and operator theory.A new approach for constructing biorthogonal two-direction wavelet packets is developed.The formulae for performing iteration and decomposition are established.New Riesz bases for L^2(R) are obtained by the given biorthogonal two-direction wavelet packets.Finally,an example for constructing biorthogonal two-direction wavelet packets is given.
出处 《工程数学学报》 CSCD 北大核心 2010年第5期901-910,共10页 Chinese Journal of Engineering Mathematics
基金 The Natural Science Foundation of Shaanxi Province(09JK708)
关键词 双向小波 双向小波包 双向加细函数 双正交 two-direction wavelet two-direction wavelet packets two-direction refinable function biorthogonal
  • 相关文献

参考文献11

  • 1Chui C K.An Introduction to Wavelets[M].New York:Academic,1992.
  • 2Daubechies I.Ten Lectures on Wavelets[M].Philadeophia:SIAM,1992.
  • 3Geronimo J,Hardin D P,Massopnst P R.Fractal functions and wavelet expansions based on several scaling functions[J].Approx Theory,1994,78:373-401.
  • 4Coifman R R,et al.Signal processing and compression with wavelet packets[C] //Progress in Wavelet Analysis and Applications,Toulouse:Springer-Verlay,1992:77-93.
  • 5Efromovich S,et al.Data-driven and optimal denoising of a signal and recovery of its derivation using multiwavelets[J].IEEE Trans Signal Processing,2004,54:628-635.
  • 6Zhang N,Wu X L.Lossless compression of color mosaic images[J].IEEE Trans Image Processing,2006,15:1379-1388.
  • 7Cohen A,Daubechies I.On the instability of arbitrary biorthogonal wavelet packets[J].SIAM Math Anal,1993,24:1340-1354.
  • 8Daubechies I.Orthonormal basis of compactly supported wavelets[J].Comm Pure and Appl Math,1998,41:909-996.
  • 9Daubechies I,Lagarias J C.Two-scale difference equations I existence and global regularity of solution[J].SIAM J Math Anal,1991,22:1388-1410.
  • 10Yang S Z.Biorthogonal two-direction refinable function and two-direction wavelet[J].Appl Math Comput,2006,182:1717-1724.

同被引文献4

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部