期刊文献+

求解零空闲流水线调度问题的和声退火算法 被引量:4

Harmony-annealing optimization for no-idle flow shop scheduling
下载PDF
导出
摘要 针对以最大完工时间为目标的零空闲流水线调度问题提出了和声退火算法。首先引入了基于ROV规则的编码方式,使和声搜索应用于离散问题,从初始化方法、参数调整、候选解的产生、和声记忆库的更新方法等四个方面对基本和声搜索算法进行了改进,基于此提出了改进的和声搜索算法;其次,结合和声搜索和模拟退火算法的优点,分别对和声搜索过程中的最优解、和声记忆库中的随机选中的解及一个新解分别进行模拟退火,提出了三种不同的和声退火算法。仿真实验表明所提算法的有效性和优越性。 An Improved Harmony Search(IHS) optimization algorithm is firstly presented to solve the No-Idle Flow Shop (NIFS) problem with the objective of minimizing the makespan of jobs in the literature.In the improved algorithm,a rule called the Ranked-Order-Value(ROV) is applied to enable the continuous harmony search algorithm to be used in all sequencing problems.Then three hybrid algorithms based on the IHS and the simulated annealing algorithm is studied for the NIFS in this literature.In the hybrid algorithms,several parts of the original harmony search are improved.Simulation results based on the well known benchmark suites in the literature show the effectiveness and superiority of the presented algorithms.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第30期221-225,共5页 Computer Engineering and Applications
基金 国家自然科学基金No.60874075 No.70871065 数字制造装备与技术国家重点实验室开放课题(华中科技大学) 博士后科学基金资助(No.20070410791)~~
关键词 零空闲流水线调度 和声搜索算法 最大完工时间 和声退火算法 no-idle flow shop; harmony search; makespan; harmony-annealing optimization;
  • 相关文献

参考文献8

  • 1Adiri I, Plhoryles D.Flow-shop/no-idle or no-wait scheduling to minimize the sum of completion times[J].Naval Research Quarterly, 1982,29:495-504.
  • 2Nawaz M, Enscore Jr, Ham I.A heuristic algorithm for the m-machine, n-job flowshop sequencing problem[J].The Internationl Journal of Management Science, 1983,11 ( 1 ) : 91-95.
  • 3潘全科,王凌,赵保华.解决零空闲流水线调度问题的离散粒子群算法[J].控制与决策,2008,23(2):191-194. 被引量:16
  • 4Geem Z, Kim J, Loganathan G.A new heuristic optimizatization algorithm: Harmony search[J].Simulation, 2001, 76 (2) : 60-68.
  • 5Gecrn Z, Kim J, Loganathan G.Harmony search optimization: Application to pipe network design[J].International Journal of Model Simulation, 2002,22 (2) : 125-133.
  • 6李亮,迟世春.新型和声搜索算法在土坡稳定分析中的应用[J].水利与建筑工程学报,2007,5(3):1-6. 被引量:14
  • 7Mahdavi M, Fesanghary M, Damangir E.An improved harmony search algorithm for solving optimization problems[J].Applied Mathematics and Computation,2007,188:1567-1579.
  • 8Omran M., Mahdavi M.Globle-best harmony search[J].Appl Appl Math Coput,2007.

二级参考文献23

  • 1曹文贵,颜荣贵.边坡非圆临界滑面确定之动态规划法研究[J].岩石力学与工程学报,1995,14(4):320-328. 被引量:41
  • 2李亮,迟世春,林皋.引入和声策略的遗传算法在土坡非圆临界滑动面求解中的应用[J].水利学报,2005,36(8):913-918. 被引量:12
  • 3肖专文,张奇志,顾兆岑,林韵梅.边坡最小安全系数的遗传算法[J].沈阳建筑工程学院学报,1996,12(2):144-147. 被引量:48
  • 4陈祖煜 邵长明.最优化方法在确定边坡最小安全系数方面的应用[J].岩土工程学报,1988,4.
  • 5Arai K, Tagyo K. Determination of noncircular slip surface giving the minimum factor of safety in slope stability analysis[J]. Soils and Founclations,1985,25(1) :43-51.
  • 6Zolfaghari A R, Heath A C, McCombie P F. Simple genetic algorithm search for critical non-circular failure surface in slope stability analysis [ J ]. Computers and Geotechnics, 2005,32:139-152.
  • 7Bolton H P J, Heymann G, Groenwold A A. Global search for critical failure surface in slope stability analysis[J]. Engineering Optimization, 2003,35 : 51-65.
  • 8Cheng Y M. Locations of Critical Failure Surface and some Further Studies on Slope Stability Analysis [ J ]. Computers and Geotechnics, 2003,30: 255-267.
  • 9Geem Z W, Kim J H Kim, Loganathan G V. Harmony search[J]. Simulation,2001,76(2) :60-68.
  • 10Lee K S, Geem Z W. A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice[J]. Computer and methods in Applied Mechanics and Engineering, 2005, 194: 3902-3933.

共引文献27

同被引文献47

  • 1李俊青,王玉亭,潘全科,李元振.混合离散和声搜索算法求解旅行商问题[J].微电子学与计算机,2009,26(3):17-21. 被引量:8
  • 2江平宇,张映锋,赵刚,田颖,屈挺.面向e-制造的工艺规划与工序分配集成技术研究[J].计算机集成制造系统,2005,11(6):788-793. 被引量:2
  • 3吴亮红,王耀南,周少武,袁小芳.双群体伪并行差分进化算法研究及应用[J].控制理论与应用,2007,24(3):453-458. 被引量:47
  • 4Geem Z W, Kim J H, Loganathan G V. A new heuristic optimization algorithm: harmony search. Simulation, 2001; 76(2):60-68.
  • 5GEEM Z. Optimal cost design of water distribution networks using harmony search. Engineering Optimization, 2006 ; 38 ( 3 ) :259-280.
  • 6Storn R, Rice K. Differential evolution a simple and efficient heuris- tic for global optimization over continuous spaces. Journal of Global Optimization, 1995; 11(4):341-359.
  • 7Store R, Price K. Minimizing the real functions of the ICEC' 96 contest by differential evolution. Proceedings of the IEEE Confer- ence on Evolutionary Computation, ICEC, 1996 : 842-844.
  • 8Arijit Biswas, Sambarta Dasgupta, Swagatam Das, et al. Synergy of PSO and Bacterial Foraging Optimization-A Comparative Study on Numerical Benchmarks. Innovations in Hybrid Intelligent Systems, 2007 ;44:255-263.
  • 9Biskup D.Single-machine scheduling with learning considerations[J].European Journal of Operational Research,1999,115(1):173-178.
  • 10Mosheiov G.Scheduling problems with a learning effect[J].European Journal of Operational Research,2001,132(3):687-693.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部