期刊文献+

一种基于条件熵的特征选择算法 被引量:3

An Algorithm of Feature Selection Based on Conditional Entropy
下载PDF
导出
摘要 特征选择是一种处理维数约简的有效方法。以条件熵为特征子集评价条件,采用随机搜索和启发式搜索相结合的搜索策略,设计了一种新的特征选择方法。该方法不仅能够求得经典启发式特征选择方法的选到特征子集,还可以得到一些与其不同的满足条件特征子集,同时在多数情况下可以减少时间消耗。实验研究表明了提出的算法的有效性。 Feature selection is an important method to reduce dimension of data sets. In this paper, a new feature selection approach is proposed, in which the conditional entropy is employed to evaluate the validation of feature subset, and a search strategy merging random strategy and heuristic strategy is used to decrease the search space. The result obtained by using original algorithm is contented in the one by operating the proposed algorithm, and the consuming time, in most instances, is less than the original one. The experiment indicates that the algorithm is effectiveand efficient.
作者 渠小洁
出处 《太原科技大学学报》 2010年第5期413-416,共4页 Journal of Taiyuan University of Science and Technology
关键词 特征选择 条件熵 随机搜索 启发式 feature selection, conditional entropy, random searching, heuristic
  • 相关文献

参考文献9

二级参考文献69

共引文献975

同被引文献67

  • 1饶鲜,杨绍全,魏青,董春曦.基于熵的入侵检测特征参数选择[J].系统工程与电子技术,2006,28(4):599-601. 被引量:8
  • 2Li G-Z, Yang J Y. Feature selection for ensemble learning and its application[M]. Machine Learning in Bioinformatics, 2008: 135-155.
  • 3Sheinvald J, Byron Dom, Wayne Niblack. A modelling approach to feature selection[J]. Proc of 10th Int Conf on Pattern Recognition, 1990, 6(1): 535-539.
  • 4Cardie C. Using decision trees to improve case-based learning[C]. Proc of 10th Int Conf on Machine Learning. Amherst, 1993: 25-32.
  • 5Modrzejewski M. Feature selection using rough sets theory[C]. Proc of the European Conf on Machine ,Learning. 1993: 213-226.
  • 6Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data[J]. J of Bioinformatics and Computational Biology, 2005, 3(2): 185-205.
  • 7Francois Fleuret. Fast binary feature selection with conditional mutual information[J]. J of Machine Learning Research, 2004, 5(10): 1531-1555.
  • 8Kwak N, Choi C-H. Input feature selection by mutual information based on Parzen window[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(12): 1667-1671.
  • 9Novovicova J, Petr S, Michal H, et al. Conditional mutual information based feature selection for classification task[C]. Proc of the 12th Iberoamericann Congress on Pattern Recognition. Valparaiso, 2007: 417-426.
  • 10Qu G, Hariri S, Yousif M. A new dependency and correlation analysis for features[J]. IEEE Trans on Knowledge and Data Engineering, 2005, 17(9): 1199- 1207.

引证文献3

二级引证文献207

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部