期刊文献+

小波分析在飞参数据降噪中的应用 被引量:7

Application of Wavelet Analysis on Flight Data De-Noising
下载PDF
导出
摘要 在飞行事故调查中,飞行参数是依据,飞参数据各通道参数中存在的干扰噪声,不同程度的影响着实际中的应用,利用传统的降噪滤波方法失真度大,降低了数据的可信度。小波分析可对信号进行多分辨分解及重构,具有提取数据高频和低频部分特征的能力。在分析小波分析信号降噪方法的基础上,以Matlab为平台分别利用快速傅里叶变换和小波分析对某型飞机的飞参数据的俯仰角通道数据进行了降噪处理进行仿真。结果表明小波分析降噪性能优异,可信度高。方法已在基于飞参数据的多项应用中得到推广。 The practical applications are prohibited more or less due to the noise pollution in flight data.But the traditional methods of denoising have higher distortion and lower reliability.Wavelet analysis has the capability of multi-resolution decomposition and reconstruction,extracting features from the upper and lower frequencies of the data.The simulation of data denoising to pitch angle of a type aircraft was carried out based on research of the method of wavelet denoising in matlab.The results showed that the method is high performance and credibility.The method has been promoted in any applications based on flight data.
出处 《计算机仿真》 CSCD 北大核心 2010年第10期1-4,共4页 Computer Simulation
关键词 小波分析 飞参数据 降噪 傅里叶变换 Wavelet Analysis Flight Data Denoising Fourier Transform
  • 相关文献

参考文献4

二级参考文献13

  • 1[1]Mallat S. Singularity detection and processing with wavelets [J]. IEEE Trans on Information Theory, 1992, 38(2): 617-643.
  • 2苏秀革,邵惠鹤.基于小波奇异性的过程数据显著误差检测[J].浙江大学学报(自然科学版),1998,增刊(6):538-641.
  • 3Agrawal Rakesh,Faloutsos Christos,Swami Arun. Efficient Similarity Search In Sequence Databases[C].In:Proc of the 4th Conference on Foundations of Data Organization and Algorithms,Chicago, 1993-08:69~84
  • 4Chan Franky, Fu Wai-chee. Efficient Time Series Matching by Wavelets[C].In: 15th IEEE International Conference on Data Engineering, Sydney, Australia, 1999:126~133
  • 5Gautam Das,King-Ip Lin,Heikki Manilla et al. Rule Discovery in Time Series Databases[C].In:Proc of the Fourth International Conference on Knowledge Discovery & Data Mining, 1998:16~22
  • 6Keogh E,Pazzani M.An enhanced representation of time series which allows fast and accurate classification ,clustering and relevance feedback[C].In:Proceedings of the Fourth International Conference of Knowledge Discovery and Data Mining,AAAI Press,1998:239~241
  • 7Keim DA,Kriegel H-P.Visualization Techniques for Mining Large Databases:A comparison[J].IEEE Transactions on Knowledge and Data Engineering, 1996;8(6) :923~938
  • 8.Mallat Stephane. A Theory for Multi-resolution Signal Decomposition:The Wavelet Representation[J].IEEE Transactions on Pattern analysis and Machine Intelligence, 1989; 11 (7) :674~693
  • 9Ankerst M,Elsen C,Ester M et al. Visual Classification : An Interactive Approach to Decision Tree Construction[C].In:Proc 5th Int Conf on Knowledge Discovery and Data Mining,San Diego,CA, 1999:392~396
  • 10Mihael Ankerst. Visual Data Mining with Pixel-oriented Visualization Techniques[C].In:ACM SIGKDD Workshop on Visual Data Mining,San Francisco,CA ,2001

共引文献105

同被引文献66

引证文献7

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部