期刊文献+

基于进化粒子群优化的非线性系统辨识 被引量:4

Nonlinear System Identification Based On Evolution Particle Swarm Optimization
下载PDF
导出
摘要 为解决复杂非线性系统的辨识问题,提出了一种基于进化粒子群优化算法的非线性系统辨识方法。在标准粒子群优化算法的基础上引入一种进化策略,增加粒子的多样性。在算法迭代寻优的过程中,通过对群体中的粒子进行选择、变异等进化操作,构造进化粒子群优化算法,提高算法的全局搜索能力。将非线性系统辨识问题转化为非线性连续域优化问题,利用进化粒子群优化算法进行并行、高效搜索,以获得该优化问题的解。通过对多输入单输出的Wiener-Hammerstein模型进行辨识,验证了该方法的正确性和可行性。 Nonlinear system identification is one of the most important topics of modern identification.A novel approach for complex nonlinear system identification is proposed based on evolution particle swarm optimization(EPSO) algorithm.In order to increase the diversity of particle,a new evolutionary strategy in the standard particle swarm optimization(PSO) algorithm is introduced.Firstly,in the iterations of algorithm optimization process,Evolution of PSO algorithm is constructed to improve the capacity of global search algorithms by controlling groups of particles in the selection,variation,such as evolutionary operation.Secondly,the problems of nonlinear system identification are converted to nonlinear optimization problems in continual space,and then the EPSO algorithm is used to search the parameter concurrently and efficiently to find the optimal estimation of the system parameters.The feasibility of the proposed method is demonstrated by the identification of a multi-input and single-output Wiener-Hammerstein model.
出处 《计算机仿真》 CSCD 北大核心 2010年第10期179-182,186,共5页 Computer Simulation
关键词 进化粒子群 系统辨识 非线性系统 Evolution particle swarm optimization System identification Nonlinear system
  • 相关文献

参考文献13

  • 1J Kennedy, REberhart. Particle Swarm Optimization [ C ]. IEEE International Conference on Neural Networks, Perth, Australia. 1995. 1942 - 1948.
  • 2R Eberhart, J Kennedy. A New Optimizer Using Particle Swarm Theory[ C]. In: Proc of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995.39-43.
  • 3朱丽莉,杨志鹏,袁华.粒子群优化算法分析及研究进展[J].计算机工程与应用,2007,43(5):24-27. 被引量:57
  • 4李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 5田雨波,朱人杰,薛权祥.粒子群优化算法中惯性权重的研究进展[J].计算机工程与应用,2008,44(23):39-41. 被引量:27
  • 6董元,王勇,易克初.粒子群优化算法发展综述[J].商洛学院学报,2006,20(4):28-33. 被引量:10
  • 7E Hosam, S Mohammed, H Khaled. Parameter Estimation of Wiener - Hammerstein Models [ J]. JSME International Journal, 2001,44(1) :118 -124.
  • 8M Boutayeb, M Darouach. Reeu:rsive identification method for MISO Wiener- Hammerstein model[ J]. IEEE Trans. on Automatic Control, 1995,40 (2):287 -291.
  • 9Alain Y Kibangou, Gerard Favier. Toeplitz - Vandermonde Matrix Factorization With Application to Parameter Estimation of Wiener - Hammerstein Systems[ J]. IEEE Signal Process Letters. 2007, 14(2) :141 - 144.
  • 10Ke Jing, Zhang Chengjin and Qiao Yizheng. Modified Evolution Strategy Based Identification of Multi - Input Single - Output Wiener- Hammerstein Model [ C ].International Conference on Natural Computation. 2007. 239-243.

二级参考文献82

共引文献493

同被引文献23

  • 1唐强,王建元,朱志强.基于粒子群优化的三维突防航迹规划仿真研究[J].系统仿真学报,2004,16(9):2033-2036. 被引量:53
  • 2GAO Lei - fn, Qi Wei, LIU Xu - wang. Particle Swarm Optimization algorithm Based on Variable Metric Method and its application of non - linear equations [ J ]. ICACC 2010 The 2nd International Conference on Advanced Computer Control, 2010 - 3. 514 - 518.
  • 3KENNEDY J, EBERHART R. Particle swarm optimization[C]. Proceeding of IEEE International Conference on Neural Networks. Piscataway:IEEE Service Center, 1995 : 1 942-1 948.
  • 4EBERHART R,KENNEDY J. A new optimizer using particle swarm theory[C]. Proceeding of the International Symposium on Micro Machine and Human Science, Nagoya, 1995 : 39-43.
  • 5RATNAWEERA A, HALGAMUGE S K. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Transaction on Evolutionary Compution, 2004,8 (3):240-255.
  • 6Van Den BERGH F, ENGELBRECHT A P. Cooperative learning in neural networks using particle swarm optimizers [J]. South Afriean Computer Journal, 2000 (26) : 84-90.
  • 7STORN R,RRICE K V. Differential evolution-A simple and efficient heuristic for global optimization over continuous space[J]. Journal of Global Optimization, 1997,11(4) : 341-359.
  • 8SHI Y H, EBERHART R C. A modified particle swarm optimizer[C]. Proceedings of IEEE International Conference on Evolutionary Computation. Piscataway: IEEE Press, 1998: 69-73.
  • 9QIN A K, SUGANTHAN P N. Self-adaptive differential evolution algorithm for numerical optimization[C]. IEEE Congress on Evolutionary Compution, 2005 : 1 785-1 791.
  • 10LIU Hui,CAI Zixing, WANG Yong. Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization[J]. Applied Soft Computing,2010,10(2) :629-640.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部