期刊文献+

基于矩不变量-2DPCA的掌纹识别算法 被引量:2

Palmprint recognition based on moment invariance and 2DPCA
下载PDF
导出
摘要 在掌纹识别问题的研究中,首先在频域内对图像在主方向上利用2D Gabor滤波器进行滤波,增强特征纹线信息。然后通过小波变换对掌纹图像进行分解,可以降低图像的分辨率并提取低频成份。对二维主成分分析(2DPCA)可以降低计算复杂度,有利于计算掌纹图像的特征。在样本采集过程中难免会有一些由于微小旋转或挤压所引起的噪声所带来的影响,为了对传统的2DPCA算法进行改进,并提高掌纹算法的识别率。同时利用减少上述噪声的影响。将两种方法结合在一起,反复进行掌纹特征的计算,最后使用最近邻法则进行匹配。实验表明,矩不变量配合2DPCA的方法可以提高掌纹图像的识别率。 This paper proposed an enhanced algorithm of palmprint recognition.The 2D Gabor was done firstly to filter in the main direction and strengthen the primary line's information.Then we adopted wavelet transform to decompose the palmprint image,and we can decrease the resolution and extract the low frequency component.2-Dimentional Principal Component Analysis(2DPCA) can avoid transforming from image matrix to 1D vector so as to reduce the computational complexity and gain the eigenvalue of image.However,some noises will affect the algorithm due to the tiny rotation and squeezing in the samples collection.In order to improve the traditional 2DPCA,and increase the recognition rate of palmprints,the paper applied the Moment invariance.It is not sensitive to the noise mentioned above,and can prevent from being influenced by them.This paper combined the two methods,and calculated the eigenvalue again and again,then matched each other by nearest distance rule.The experiment demonstrates that 2DPCA combining with moment invariances can improve recognition rate compare to 2DPCA.
作者 马猷 孙季丰
出处 《计算机仿真》 CSCD 北大核心 2010年第10期197-201,293,共6页 Computer Simulation
基金 广东省自然科学基金(06300098)
关键词 小波分解 二维主成分分析 矩不变量 Wavelet decomposition 2-Dimentional principal component analysis(2DPCA) Moment invariance
  • 相关文献

参考文献17

  • 1边肇祺 张学工.模式识别(第二版)[M].北京:清华大学出版社,1999.224-227.
  • 2K Liu, Y Q Cheng, J Y Yang. Algebraic feature extraction for image recognition based on an optimal discriminated criterion [ J ]. Pattern Recognition, 1993,26 (6) :903 - 911.
  • 3杨健,杨静宇,等.具有统计不相关性的图像投影鉴别分析及人脸识别[J].计算机研究与发展,2003,40(3):447-452. 被引量:39
  • 4Yang Jian, D Zhang, Yang Jingyu. Two dimensional PCA : A new approach to appearance2based face representation and recognition [ J ]. IEEE Transactions Pattern Analysis and Machine Intelligence, 2004,26( 1 ) : 131 - 137.
  • 5Wei Zhushi, et al. Palmprint Image Sysnthesis: A Prelinminary Study[ C ]. IEEE International Conference on Image Processing 978 -1 -4244-17 64 -3. Oct, 2008. 285 -289.
  • 6Wang Shuang, Xu Yong. A New Palmprint Identification Algorithm Based on Gabor Filter and Moment Invariant [ J ]. IEEE International Conference on Computational Intelligence and Security 978 - 1 -4244 - 1674 -5. Dec, 2008. 491 -496.
  • 7苑玮琦,黄静,桑海峰.小波分解与PCA方法的掌纹特征提取方法[J].计算机应用研究,2008,25(12):3671-3673. 被引量:14
  • 8Lofts Nanni, Alessandra Lumini. Wavelet decomposition tree selection for palm and face authentication [ J 1. Pattern Recognition Letters, 2008,29:343 - 353.
  • 9Yi - Chun Lee, Chin - Hsing Chen. Face Recognition Based on Gabor Features and Two - Dimensional PCA [ C ]. Proceeding of the International Conference on Intelligent Information Hiding and Multimedia Signal Processing 978 - 0 - 7695 - 3278 - 3. Aug, 2008. 573 -574.
  • 10王路,王磊,卓晴,王文渊.基于二维主成分分析的运动目标检测[J].计算机科学,2008,35(8):206-207. 被引量:2

二级参考文献46

共引文献135

同被引文献26

  • 1Xiang-QianWu,Kuan-QuanWang,DavidZhang.Wavelet Energy Feature Extraction and Matching for Palmprint Recognition[J].Journal of Computer Science & Technology,2005,20(3):411-418. 被引量:19
  • 2李强,裘正定,孙冬梅,刘陆陆.基于改进二维主成分分析的在线掌纹识别[J].电子学报,2005,33(10):1886-1889. 被引量:36
  • 3Yugang Jiang Ping Guo.Face Recognition by Combining Wavelet Transform and k-Nearest Neighbor[J].通讯和计算机(中英文版),2005,2(9):50-53. 被引量:2
  • 4P N Belhumeur,J P Hespanha,D J Kriegnaan. Eigenfaces vs fisher- faces :recognition using class specific linear projection [ J ]. IEEE Trans. on PAMI,1997,19(7) :711 -720.
  • 5J Yang,et al. Two dimensional PCA:A new approach to apperar- ance based face representation and recognition [ J ]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2004,26 ( 1 ) : 131 - 137.
  • 6D Q Zhang,Z H Zhou. 2D(PC)2A: Two - directional two - di- mensional PCA for efficient face representation and recognition [J]. Neurocomputing,2005,69( 1 ) :224 -231.
  • 7E J Candes. Compressive Sampling [ C ]. Proc. of International Congress of Mathematicians, Madirid, Spain : [ s. n. ] ,2006.
  • 8E J Candes, T Tao. Near Optimal Signal Recovery from Random Projections: Universal Encoding Strategies [ J ]. IEEE Trans. on In- formation Theory,2006,52 ( 12 ) : 5406 - 5425.
  • 9E J Candes, M B Wakin. An Introduction to Compressive Sam- piing[ J ]. Signal Processing Magazine,2008,25 (2) :21 - 30.
  • 10R G Baraniuk. A lecture on compressive sensing[ J]. Signal Pro- cessing Magazine,2007,24 (4) : 118 - 121.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部