期刊文献+

农业科技服务系统中的基于复合混沌系统加密的图像信息保护算法

Image Information Protection Encryption Algorithms Based on the Compound Chaotic System in Service Systems of Agricultural Science and Technology
下载PDF
导出
摘要 在农业科技服务系统构建中,关于农业科技信息的保护方面,提出一种基于复合混沌系统加密的数字水印嵌入算法,嵌入过程在要保护图像的RGB色彩空间经Contourlet变换后的域内进行。原始水印经过复合混沌加密后,重复嵌入到R、G、B各颜色分量的Cont-ourlet变换域低频分量中。水印提取时,可以根据R、G、B颜色分量Contourlet域低频系数值提取水印。实验结果证明,该水印算法可以抵抗JPEG压缩、中值滤波、加噪、剪切、旋转剪切等常规水印攻击,有效提升了水印的不可见性和鲁棒性。 Protection of agricultural science and technology information is a part of the construction of service system of agricultural science and technology.This article proposes a watermark embedding algorithms based on the encrypted complex chaotic system.The embedding process is implemented in RGB domain of the protected image,which is transformed in the Contourlet algorithms.The original watermark image is firstly encrypted through complex chaos scrambling technique and then repeatedly embedded into the Contourlet transform low frequency sub-band of RGB color components.The watermark can be retrieved according to the coefficients of low frequency sub-band of RGB color components.The experimental result showed that this algorithm can resist attacks,such as JPEG compression,median filtering,adding noise,cropping,rotating and so on,and it can also effectively promote the invisible and robust characteristic of the watermark.
出处 《安徽农业科学》 CAS 北大核心 2010年第27期15398-15401,15418,共5页 Journal of Anhui Agricultural Sciences
关键词 农业科技服务系统 混沌系统 数字水印 CONTOURLET变换 彩色图像 Service systems of agricultural science and technology; Chaotic system; Digital watermarking; Contourlet transform; Color image;
  • 相关文献

参考文献6

二级参考文献110

  • 1[1]PECORA L M, CARROLL T L. Synchronization in chaotic systems[J]. Phys Rev Lett 1990, 64: 821-823.
  • 2[2]KOCAREV L, HELLE K. Experimental demonstration of secure communications via chaotic synchronization[J]. Int J Bifurcation and Chaos, 1992, 2(3): 709-713.
  • 3[3]MURALI K, LAKSHMANAN M. Synchronization through compound chaotic signal in Chua's circuit and Murali-Lakshmanan-Chua circuit[J]. Int J Bifurcation and Chaos, 1997, 7: 415-421.
  • 4[4]PARLITZ U, KOCAREV L, STOJANOVSKI T, et al. Encoding messages using chaotic synchronization[J]. Phys Rev E, 1996, 53(5): 4351-4361.
  • 5[5]MURALI K, LAKSHMANAN M. Efficient signal transmission by synchronization through compound chaotic signal[J]. Phys Rev E, 1997, 56(1): 251-255.
  • 6[6]PARTLIZ U, CHUA L O. Transmission of digital signals by chaotic synchronization[J]. Int J Bifurcation and Chaos, 1992, 2(4): 937-977.
  • 7[7]CUOMO K M, OPPENHEIM A V. Circuit implementation of synchronized chaos with applications to communications[J]. Phys Rev Lett 1993, 71(1): 65-68.
  • 8[8]CUOMO K M, OPPENHEIM A V. Robustness and signal recovery in a synchronized chaotic system[J]. Int J Bifurcation and Chaos, 1993, 3(6): 1629-1638.
  • 9[9]DEDIU H, KENNEDY M P. Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing Chua's circuits[J]. IEEE Trans Circuits Syst, 1993, 40(10): 634-642.
  • 10[10]YANG T, CHUA L O. Secure communication via chaotic parameter modulation[J]. IEEE Trans on Circ Systems I, 1996, 43(9): 817-819.

共引文献201

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部