摘要
讨论了具有负记忆项的非线性黏弹性方程uu+△2u+αu-∫g(t-τ)△2u(τ)dτ+β|ut|ρut=0r|u|ξu的初边值问题.通过构造修正位势井,利用Galerkin方法和紧致性原理,得出了整体正则解的存在性和渐近性,并利用能量补偿法证明了解的爆破性.
The initial boundary value problems for a nonlinear viscoelastic equation with negative memory tas follow uu+△2u+αu-∫^t0 g(t-τ)△2u(τ)dτ+β|ut|ρut=r|u|^ξu is discussed. By constructing the modified potential well, applying Galerkin method and compactness principle, the existence and asymptot-ic behavior of global regular solution of these problems are obtained, and the blowup of the solution is proved by making use of the energy compensation method.
出处
《郑州轻工业学院学报(自然科学版)》
CAS
2010年第4期107-110,共4页
Journal of Zhengzhou University of Light Industry:Natural Science
基金
河南省基础与前沿技术研究计划项目(092300410045)
关键词
黏弹性方程
初边值问题
负记忆
整体解的存在性
解的渐近性
viscoelastic equation
initial boundary value problem
negative memory
existence of global so-lution
asymptotic behavior of solution