期刊文献+

Compact and tunable mid-infrared source based on a 2 μm dual-wavelength KTiOPO_4 intracavity optical parametric oscillator

Compact and tunable mid-infrared source based on a 2 μm dual-wavelength KTiOPO_4 intracavity optical parametric oscillator
原文传递
导出
摘要 Using a double resonant KTiOPO4 (KTP) intracavity optical parametric oscillator operating at degenerated point of 2 μm, we demonstrate a unique mid-infrared source based on difference frequency generation in GaSe crystal. The output tuning range is 8.42-19.52 μm, and a peak power of 834 W for type-Ⅰ phase matching scheme and 730 W for type-Ⅱ phase matching scheme are achieved. Experimental results show that this oscillator is a good alternative to the generator of a compact and tabletop mid-infrared radiation with a widely tunable range. Using a double resonant KTiOPO4 (KTP) intracavity optical parametric oscillator operating at degenerated point of 2 μm, we demonstrate a unique mid-infrared source based on difference frequency generation in GaSe crystal. The output tuning range is 8.42-19.52 μm, and a peak power of 834 W for type-Ⅰ phase matching scheme and 730 W for type-Ⅱ phase matching scheme are achieved. Experimental results show that this oscillator is a good alternative to the generator of a compact and tabletop mid-infrared radiation with a widely tunable range.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第11期436-440,共5页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant Nos. 60777036 and 60671036) the National Basic Research Program of China (Grant No. 2007CB310403)
关键词 mid-infrared radiation difference frequency generation optical parametric oscillator phase matching scheme mid-infrared radiation, difference frequency generation, optical parametric oscillator, phase matching scheme
  • 相关文献

参考文献18

  • 1Liu Y Y, Liu H P, Guo Y Q, Lin J L, Liu X Y, Huang G M, LiFYandLiJ R2000 Chin. Phys. 9 184.
  • 2Forget S, Faugeras C, Bengloan J Y, Calliqaro M, Parillaud O, Giovannini M, Faist J and Sirtori C 2005 Electron. Lett. 41 418.
  • 3Hofstetter D, Beck M, Aelten T, Faist J, Oesterle U, Llegenms M, Gini E and Melchior H 2001 Appl. Phys. Lett. 78 1964.
  • 4Faugeras C, Forget S, Duchemin E B, Page H, Bengloan J Y, Parillaud O, Calligaro M, Sirtori C, Giovannini M and Faist J 2005 IEEE J. Quantum. Electron. 41 1430.
  • 5Yu J S, Slivken S, Evans A, Darvish S R, Nguyen J and Razeghi M 2006 Appl. Phys. Lett. 88 091113.
  • 6Vodopyanov K L 1999J. Opt. Soc. Am. B 16 1579.
  • 7Mennerat G and Kupecek P 1998 ASSL FC paper 13.
  • 8Schunemann P G, S D Setzler, Mohnkern L, Pollak T M, Bliss D F, Weyburne D and Hearn O 2005 CLEO 3 1835.
  • 9Budni P A, Knights M G, Chicklis E P and Schepler K L 1993 Opt. Lett. 18 1068.
  • 10Zakel A, Wagner G J, Alford W J and Caxrig T J 2005 ASSP paper MD5.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部