期刊文献+

Sox9基因诱导脂肪干细胞向软骨细胞分化 被引量:1

Sox9 gene induced chondrocyte differentiation of human adipose-derived stem cells
原文传递
导出
摘要 目的:观察Sox9基因对人脂肪干细胞(ADSCs)的诱导作用。方法:分离、纯化、培养人源ADSCs,并绘制生长曲线,传代三次后的ADSCs利用脂质体转染Sox9基因,选用抗生素G418进行筛选。以空载体转染细胞作对照,分别取48h和14d转染后的细胞做Flag蛋白免疫组织化学鉴定。通过检测转染细胞中II型胶原来确定ADSCs是否向软骨细胞分化。结果:ADSCs呈长梭形,形态与骨髓间充质干细胞相似,600μg/mlG418为最适筛选浓度。转染后第48h和14d的细胞均能表达Sox9基因融合表达的Flag蛋白。第48h和14d,转染效率分别为93%和75%。转染后14d的ADSCs表达II型胶原,转染后48h实验组和对照组都为阴性。结论:Sox9基因能诱导脂肪干细胞向软骨细胞分化。 Objective: To investigate the inductive effect of Sox9 gene on chondrocyte differentiation of human adipose-derived stem cells. Methods: Human ADSCs were separated, purified and cultured in the incubator, and then the growth curve of ADSCs were described. Passage 3 of ADSCs was transfected with pcDNA3.1-Sox9 using Lipo-fectamineTM2000 and the transfected cells were selected by G418. After incubation for 48 h and 14 d of transfected ADSCs, the expressions of Sox9 were indirectly determined with Flag protein by immunochemical method. The chondrogenesis of ADSCs were determined by morphology and immunochemical detection of expression of type II collagen. Results: ADSCs were long spindle-shaped, and similar to bone marrow-derived mesenchymal stem cells. The exogenous expression of Sox9 was detected 48 h and 14 d after transfection and the rate of Sox9 positive ADSCs was about 93%and 75 %, respectively. The expression of type II collagen was found in the ADSCs after transfection for 14 d, but not in the control ADSCs and the ones after transfection for 48 h. Conclusion: Sox9 gene could induce chondrocyte differentiation of human adipose-derived stem cells.
出处 《现代生物医学进展》 CAS 2010年第20期3851-3853,共3页 Progress in Modern Biomedicine
关键词 SOX9基因 脂肪干细胞 软骨细胞分化 转染 原代培养 Sox9 gene; adipose-derived stem cells; chondrocyte differentiation; transfection; primary culture;
  • 相关文献

参考文献3

二级参考文献30

  • 1钟映晖,李建春,公衍道,赵南明,张秀芳.Feasibility of Using Chitosan in Nerve Repair[J].Tsinghua Science and Technology,2000,5(4):432-435. 被引量:1
  • 2胡铁霞,李祖兵.新型骨组织工程种子细胞——脂肪干细胞的研究进展[J].国外医学(口腔医学分册),2005,32(1):13-15. 被引量:4
  • 3Lin Y Luo E Chen X Liu L Qiao J Yan Z Li Z Tang W Zheng X Tian W.Molecular and cellular characterization during chondrogenic differentiation of adipose tissue-derived stromal cells in vitro and cartilage formation in vivo[J].中国生物学文摘,2006,20(5):2-3. 被引量:31
  • 4Berta P,Hawkins JR,Sinclair AH Genetic evidence equating SRY and the testis-determining factor.Nature,1990,348:448-450.
  • 5Harley VR,Jackson DI,Hextall PJ DNA binding activity of recombinant SRY from normal males and XY females.Science,1992,255:453-456.
  • 6Zanaria E,Muscatelli F,Bardoni B A novel and unusual member of the nuclear hormone receptor superfamily is responsible for X-linked adrenal hypoplasia congenita.Nature,1994,372:635-641.
  • 7Tommerup N,Schempp W,Meinecke P,et al.Assignment of an autosomal sex reversal locus (SRA1) and campomelic dysplasia(CMPD1) to 17q24.3-q25.1.Nat Genet,1993,4:170-174.
  • 8Foster JW,Dominguez-Steglich MA,Guioli S Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRYrelated gene.Nature,1994,372:525-530.
  • 9Lefebvre V,Huang W,Harley VR SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1 (Ⅱ)collagen gene.Mol Cell Biol,1997,17,2336-2346.
  • 10Wendong H,Xin Z,Veronique L Phosphorylation of SOX9 by cyclic AMPDependent protein kinase a enhances SOX9's ability to transactivate a Col2a1Chondrocyte-Specific enhancer.Molecular and Cellular Biology,2000,20:4149-4158.

共引文献16

同被引文献74

  • 1Malvankar SM, Khan WS. An overview of the different approaches used in the development of meniscal tissue engineering. Curr Stem Cell Res Ther, 2012, 7(2): 157-163.
  • 2St?rke C, Kopf S, Petersen W, et al. Meniscal repair. Arthroscopy, 2009, 25(9): 1033-1044.
  • 3Pereira H, Frias AM, Oliveira JM, et al. Tissue engineering and regenerative medicine strategies in meniscus lesions. Arthroscopy, 2011, 27(12): 1706-1719.
  • 4Ballyns JJ, Wright TM, Bonassar LJ. Effect of media mixing on ECM assembly and mechanical properties of anatomically-shaped tissue engineered meniscus. Biomaterials, 2010, 31(26): 6756-6763.
  • 5Makris EA, Hadidi P, Athanasiou KA. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials, 2011, 32(30): 7411-7431.
  • 6Killian ML, Lepinski NM, Haut RC, et al. Regional and zonal histo-morphological characteristics of the lapine menisci. Anat Rec (Hoboken), 2010, 293(12): 1991-2000.
  • 7Van der Bracht H, Verdonk R, Verbruggen G, et al. Cell-Based Meniscus Tissue Engineering. E-Book: Topics in Tissue Engineering, vol3, 2007.
  • 8Li NG, Shi ZH, Tang YP, et al. New hope for the treatment of osteoarthritis through selective inhibition of MMP-13. J Curr Med Chem, 2011, 18(7): 977-1001.
  • 9Verdonk P, van Laer M, Verdonk R. Meniscus replacement: from allograft to tissue engineering. Sport Traumatologie, 2008, 24(2): 78-82.
  • 10Vanderploeg EJ, Imler SM, Brodkin KR, et al. Oscillatory tension differentially modulates matrix metabolism and cytoskeletal organization in chondrocytes and fibrochondrocytes. J Biomech, 2004, 37(12): 1941-1952.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部