摘要
在K-导数及其几何意义的基础上,研究了K-解析函数(变换)的K-保角、保域、K-共形映射以及黎曼映射存在唯一性定理、边界对应定理等.
Based on the definition of K-derivative and its geometric meaning, we study K-conformal trans-formation and the existence and uniqueness of the Riemann mapping theorem, the boundary corresponding theorem and so on. The conclusion is the continuation and application of the geometric meaning of analytic function and conjugate analytic function in K-analytic function.
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第10期119-125,共7页
Journal of Southwest University(Natural Science Edition)
基金
云南省教育厅科学研究基金资助项目(08Y0369)
(08C0097)
(2010Y222)
关键词
K-导数
K-解析函数(变换)
保域
K-共形映射
黎曼映射存在唯一性定理
边界对应定理
K-derivative
K-analytic function (transformation)
preserve field property
K-conformal transformation
the existence and uniqueness of the Riemann mapping theorem
the boundary corresponding theorem