期刊文献+

平面点集凸包Graham算法的改进 被引量:34

An improved Graham algorithm for determining the convex hull of planar points set
原文传递
导出
摘要 本文提出了一种计算平面点集最小凸包的快速算法。该算法首先对平面点集进行扫描,查找到最左、最右、最上、最下4个方向上的极值点,以此构造出一个初始凸包,并删除初始凸包内部的所有点;然后把剩余点集分组,每组运用格雷厄姆(Graham)算法生成一个新的凸包;最后将所有子集凸包的顶点看作一个新的点集,再次运用Graham算法生成最终凸包。测试结果表明,改进后的算法可较大幅度地提高执行效率。 In this paper,an efficient algorithm for obtaining the minimum convex hull of planar point set was presented.By scanning the point set,the extreme points in four directions (the leftmost,the rightmost,the topmost and the bottommost) were found to construct the initial convex hull.Other points inside the initial convex hull were excluded during the following scanning.Then,the remaining points were divided into several groups and each group respectively generated its convex hull based on Graham Algorithm.At last,the final convex hull was acquired from the vertices of the generated sub-convex hulls by using Graham Algorithm.Test results showed that the presented algorithm could improve the implementing efficiency and have certain theoretical significance and practical value.
出处 《测绘科学》 CSCD 北大核心 2010年第6期123-125,共3页 Science of Surveying and Mapping
基金 国家基础科学人才培养基金(J0630535)
关键词 最小凸包 Graham算法 地理信息系统 minimum convex hull Graham algorithm GIS
  • 相关文献

参考文献7

二级参考文献15

  • 1彭认灿,王家耀,田震,郭立新,陈子澎.基于凸壳构造技术的领海基点选取问题研究[J].测绘学报,2005,34(1):53-57. 被引量:14
  • 2刘纪远,王新生,庄大方,张稳,胡文岩.凸壳原理用于城市用地空间扩展类型识别[J].地理学报,2003,58(6):885-892. 被引量:203
  • 3PREPARATA F P,SHAMOS M I.Computational Geometry[M].Berlin:Springer-Verlag,1985.
  • 4GUO Ren-zhong.Spatial Analysis[M].Wuhan:Press of Wuhan Surveying and Mapping Technical University,1997.(In Chinese)
  • 5Barber C B, Dobkin D P, Huhdanpaa H. The Quickhull Algorithm for Convex Hulls[J]. ACM Transaction on Mathematical Software, 1996,22(4):469~483.
  • 6Yao A C C. A Lower Bound to Finding Convex Hulls[J]. Journal of the ACM,1981, 28: 780~787.
  • 7Yu X, Sun H. Automatic Image Registration via Clustering and Convex Hull Vertices Matching[A]. The 1st International Conference on Advanced Data Mining and Application[C]. Berlin: Springer-verlag, 2005. 439~445.
  • 8Yu X, Sun H and Chen J. Points Matching via Iterative Convex Hull Vertices Pairing[A]. The 4th International Conference on Machine Learning and Cybernetics[C]. New York: IEEE, 2005. 5350~5354.
  • 9O'Rourke J. Computational Geometry in C[M]. 2nd Edition. Cambridge: Cambridge University Press, 1998.
  • 10周培德.计算几何-算法分析与设计[M](第2版)[M].北京:清华大学出版社,2005..

共引文献55

同被引文献340

引证文献34

二级引证文献177

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部