摘要
Synthesis and use of the iron compounds supported on granular activated carbon (ICs/GAC) have shown significant environmental implications for perchlorate (ClO4^- ) removal. ICs/GAC was synthesized via hydrolyzing FeSO 4 ·7H2O on GAC, reduced by NaBH 4 solution in polyethylene glycol 6000 and ethanol solution, dried in vacuum condition and exposed to air. Synthesized ICs/GAC was characterized using transmission electron micrograph (TEM), Brunauer-Emmett-Teller, X-ray photoelectron spectroscopy (XPS). ICs/GAC was determined to be containing a large amount of FeOHSO 4 , Fe2O3 and a small amount of zero-valent iron (ZVI) nanoparticles according to TEM and XPS measurements. Batch static kinetic tests showed that 97% of ClO4^- was removed within 10 hr at 90°C and 86% of ClO4^- was removed within 12 hr at 25°C, at ICs/GAC dosage of 20 g/L. The experimental results also showed that FeOHSO 4 and Fe 2 O 3 nanoparticles have the function of perchlorate adsorption and play important roles in ClO4^- removal. The activation energy (E a ) was determined to be 9.56 kJ/mol.
Synthesis and use of the iron compounds supported on granular activated carbon (ICs/GAC) have shown significant environmental implications for perchlorate (ClO4^- ) removal. ICs/GAC was synthesized via hydrolyzing FeSO 4 ·7H2O on GAC, reduced by NaBH 4 solution in polyethylene glycol 6000 and ethanol solution, dried in vacuum condition and exposed to air. Synthesized ICs/GAC was characterized using transmission electron micrograph (TEM), Brunauer-Emmett-Teller, X-ray photoelectron spectroscopy (XPS). ICs/GAC was determined to be containing a large amount of FeOHSO 4 , Fe2O3 and a small amount of zero-valent iron (ZVI) nanoparticles according to TEM and XPS measurements. Batch static kinetic tests showed that 97% of ClO4^- was removed within 10 hr at 90°C and 86% of ClO4^- was removed within 12 hr at 25°C, at ICs/GAC dosage of 20 g/L. The experimental results also showed that FeOHSO 4 and Fe 2 O 3 nanoparticles have the function of perchlorate adsorption and play important roles in ClO4^- removal. The activation energy (E a ) was determined to be 9.56 kJ/mol.
基金
supported by the National Natural Science Foundation of China(No.50878163
50708067)
the National Major Project of Science&Technology Ministry of China(No.2008ZX07421-002)
the Research and Development Project of Ministry of Housing and Urban-Rural Development(No.2009K7-4)