期刊文献+

Runge-Kutta间断Galerkin法在求解Navier-Stokes方程中的应用 被引量:3

APPLICATION OF RKDG IN SOLUTION OF N S EQUATION
下载PDF
导出
摘要 Cockburn&Shu[1]在1988年提出了一种TVBRungeKuta局部投影的间断Galerkin有限元方法应用于Euler方程的求解,并取得了成功。文章将该方法进一步应用到NavierStokes方程的求解。 The RKDG method, proposed by Cockburn & Shu (1988), is developed into solution of N S equation, and the results are compared with exact solution of Burger equation with viscousity. The result of 2D problem has been also compared with the one obtained by solving Euler equation.
出处 《计算物理》 CSCD 北大核心 1999年第2期167-176,共10页 Chinese Journal of Computational Physics
基金 国家自然科学基金
关键词 N-S方程 间断迦辽金法 TVB R-K局部投影 discontinuous galerkin\ method Navier Stokes equation.
  • 相关文献

同被引文献29

  • 1蔚喜军,周铁.流体力学方程的间断有限元方法[J].计算物理,2005,22(2):108-116. 被引量:25
  • 2韩涛,逄勇,安婷,翟金波.基于间断有限元求解浅水方程[J].西安交通大学学报,2007,41(3):377-379. 被引量:3
  • 3贺立新,张来平,张涵信.任意单元间断Galerkin有限元计算方法研究[J].空气动力学学报,2007,25(2):157-162. 被引量:15
  • 4COCKBURT V B. Runge-Kutta method local projection p -discontinuous, Galerkin finite element method for conservation laws [ J ]. Mathermatics of Computation, 1989, 52(2) :411 -435.
  • 5COCKBURN. The Runge-Kutta method local Projection p _ discontinuous Galerkin method for scalar conservation law [ J ]. Computers and Fluids, 2005,34 ( 3 ) : 491 -506.
  • 6COCKBURN T V B. Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws : IV [ J ]. Mathermatics of Computation, 1990,54 (3) : 545 - 581.
  • 7COCKBURN. The Runge-tta discontinuous Galerkin method for conservation laws V: multidimensional systems [ J ]. Comput Phys, 1998 : 141 - 199.
  • 8Tain L,Cumpsty N A. Compressor blade leading edges insubsonic compressible fiow[J]. Journal of Mechanical En-gineering Science*2000,214(1):221-242.
  • 9Luo H, Baum J D, Lohner R. A discontinuous Galerkinmethod based on a Taylor basis for the compressible flowson arbitrary grids [J]. Journal of Computational Physics,2008,227(20):8875-8893.
  • 10Feistauer M,Kucera V. On a robust discontinuous Galer-kin technique for the solution of compressible flow [ J].Journal of Computational Physics,2007,224(1) :208-221.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部