期刊文献+

Ordinal Decision Trees

Ordinal Decision Trees
下载PDF
导出
摘要 In many decision making tasks,the features and decision are ordinal.Several ordinal classification learning algorithms have been developed in recent years,it is shown that these algorithms are sensitive to noisy samples and do not work in real-world applications.In this work,we propose a new measure of feature quality, called rank mutual information.Then,we design an ordinal decision tree(REOT) construction technique based on rank mutual information.The theoretic and experimental analysis shows that the proposed algorithm is effective. In many decision making tasks,the features and decision are ordinal.Several ordinal classification learning algorithms have been developed in recent years,it is shown that these algorithms are sensitive to noisy samples and do not work in real-world applications.In this work,we propose a new measure of feature quality, called rank mutual information.Then,we design an ordinal decision tree(REOT) construction technique based on rank mutual information.The theoretic and experimental analysis shows that the proposed algorithm is effective.
出处 《浙江海洋学院学报(自然科学版)》 CAS 2010年第5期450-461,共12页 Journal of Zhejiang Ocean University(Natural Science Edition)
基金 supported by National Natural Science Foundation of China under Grant 60703013 and 10978011 Key Program of National Natural Science Foundation of China under Grant 60932008 National Science Fund for Distinguished Young Scholars under Grant 50925625 China Postdoctoral Science Foundation.
关键词 ordinal classification rank entropy rank mutual information decision tree ordinal classification rank entropy rank mutual information decision tree
  • 相关文献

参考文献28

  • 1Aída Jiménez,Fernando Berzal,Juan-Carlos Cubero.POTMiner: mining ordered, unordered, and partially-ordered trees[J]. Knowledge and Information Systems . 2010 (2)
  • 2Fen Xia,Wensheng Zhang,Fuxin Li,Yanwu Yang.Ranking with decision tree[J]. Knowledge and Information Systems . 2008 (3)
  • 3John W. T. Lee,Daniel S. Yeung,Eric C. C. Tsang.Rough sets and ordinal reducts[J]. Soft Computing . 2006 (1)
  • 4Arie Ben-David.Monotonicity Maintenance in Information-Theoretic Machine Learning Algorithms[J]. Machine Learning . 1995 (1)
  • 5John Mingers.An Empirical Comparison of Selection Measures for Decision-Tree Induction[J]. Machine Learning . 1989 (4)
  • 6J. R. Quinlan.Induction of decision trees[J]. Machine Learning . 1986 (1)
  • 7ZHAO B,WANG F,ZHANG C S.Block-quantized support vector ordinal regression. IEEE Transactions on Neural Networks . 2009
  • 8SUN B Y,LI J Y,WU D Det al.Kernel Discriminant Learning for Ordinal Regression. IEEE Transactions on Knowledge and Data Engineering . 2010
  • 9CARDOSO J S,COSTA J P.Learning to classify ordinal data:the data replication method. Journal of Machine Learning Research . 2007
  • 10KOTLOWSKI W,SLOWINSKI R.Rule learning with monotonicity constraints. Proceeding of the 26~ (th) International Conference on Machine Learning . 2009

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部