期刊文献+

基于多粒子信息共享策略的PSO小波网络模型 被引量:1

PSO Wavelet Neural Network Model Based on Multi-Particles Information Sharing Strategy
下载PDF
导出
摘要 针对粒子群优化算法在训练小波网络存在的早熟收敛问题,提出一种改进的粒子群优化算法.该算法通过引入多粒子信息共享策略,使种群中各粒子共享多个粒子的有用信息,以期增加种群多样性,减少各粒子在进化早期被吸引到最优粒子附近的可能性,提高小波网络的建模质量.仿真表明,相对于BP算法和标准粒子群优化算法,本文算法在训练小波网络方面估计精度更高,收敛速度更快,并有效解决了早熟收敛和局部最优问题. For prematurity convergence in applying Particle Swarm Optimization(PSO) algorithm to training of Wavelet Neural Network(WNN),an improved PSO algorithm is proposed.To ameliorate population diversity,a multi-particles information sharing strategy is introduced into Simple PSO algorithm in order to reduce the likelihood that each particle in population is attracted to the neighborhood of the optimum particle during the early period of evolution.Simulations show that,by contrast with BP and Simple PSO algorithm,this algorithm is better in accuracy,convergence rate and prematurity elimination in WNN training.
出处 《昆明理工大学学报(理工版)》 北大核心 2010年第5期52-55,65,共5页 Journal of Kunming University of Science and Technology(Natural Science Edition)
关键词 粒子群优化 小波网络 信息共享 早熟收敛 particle swarm optimization wavelet neural network information sharing prematurity convergence
  • 相关文献

参考文献8

二级参考文献34

  • 1孙德保,高超.一种实用的克服局部极小的BP算法研究[J].信息与控制,1995,24(5):283-287. 被引量:18
  • 2李众立,王成端.神经网络自适应学习步长研究[J].电子科技大学学报,1996,25(6):644-648. 被引量:8
  • 3刘明军 李金屏 等.基于BP算法的小波神经网络对于一维数据的有损压缩[J].南京大学学报,2000,36(11):103-108.
  • 4SHI Y, EBERHART R C. A modified particle swarm optimizer [ C ] // Proc. of the IEEE International Conference on Evolutionary Computation. Anchorage: IEEE Press, 1998: 69-73.
  • 5KENNEDY J, MENDES R. Population structure and particle swarm performance [ C ] // Proc. of the IEEE International Conference on Evolutionary Computation. Honolulu : IEEE Press, 2002 : 1671-1676.
  • 6JANSON S, MIDDENDORF M. A hierarchical particle swarm optimizer and its adaptive variant [ J ]. IEEE Trans. on Systems, Man, and Cybernetics-Part B: Cybernectics, 2005, 35(6): 1272-1282.
  • 7MENDES R, KENNEDY J. The fully informed particle swarm: simpler, maybe better [ J ]. IEEE Trans. on Evolutionary Computation, 2004, 8(3): 204-210.
  • 8KENNEDY J, MENDES R. Neighborhood topologies in fully informed and best-of-neighborhood particle swarm [ J ]. IEEE Trans. on Systems, Man, and Cybernetics-Part C: Applications and Reviews, 2006, 36(4) : 515-519.
  • 9PERAM T, VEERAMACHANENI K, MOHAN C K. Fitness-distance-ratio based particle swarm optimization[ C]//Proc. of the IEEE Swarm Intelligence Symposium. Indianapolis: IEEE Press, 2003: 174-181.
  • 10LIN Chuan, FENG Quanyuan. The standard particle swarm optimization algorithm convergence analysis and parameter selection[ C] //Proc, of Third Int. Conf. on Natural Computation. Haikou: IEEE Press, 2007 : 823-826.

共引文献92

同被引文献10

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部