摘要
本文讨论了出现在双色谱中的非线性双曲型守恒律组的如下Cauchy问题{ut+(u/1+u+v)x=0,vt+(v/1+u+v)x=0,初值为u(x,0)=u0(x),v(x,0)=v0(x)的整体光滑解的存在性和唯一性.分析过程基于对角化方法和特征线法.
In this paper,we consider the existence of global smooth solutions to the Cauchy problem for the following nonlinear hyperbolic conservation laws arising in two component chromatographyut+u1+u+vx=0,vt+v1+u+vx=0,with initial datau(x,0)=u0(x),v(x,0)=v0(x).The analysis is based on the diagonalization method and the characteristic method.
出处
《应用数学》
CSCD
北大核心
2010年第4期870-875,共6页
Mathematica Applicata
基金
Supported by the Natural Science Foundation of China ( The Youth Foundation)(10901068)
CCNU Project (CCNU09A01004)
the Hubei Key Laboratory of Mathematical Physics
关键词
整体光滑解
双色谱
对角化方法
特征法
Global smooth solution
Two component chromatography
Diagonalization method
Characteristic method