期刊文献+

发电厂冷却系统不锈钢生物膜腐蚀的比较研究 被引量:3

Comparative Study of Microbiologically Influenced Corrosion of Stainless Steels in Reclaimed Water in Power Plant
原文传递
导出
摘要 研究了以中水为循环冷却系统补水的北京某热电厂冷却塔底粘泥中分离富集出来的硫酸盐还原菌(sulfate reducing bacteria,SRB)生长特性。采用原子力显微镜(atomic force microscopy,AFM)和电化学交流阻抗(electrochemical impedence spectroscopy,EIS)方法对比研究了中水环境下,SS304和SS316L不锈钢表面SRB生物膜的生长特征以及不锈钢/生物膜界面电化学行为。结果表明,SS316L不锈钢比SS304对SRB有更强烈的吸附特性,而耐蚀性依然好于SS304。在含SRB的中水中浸泡14 d,SS304和SS316L试片的表面粗糙度分别为(222.95±16.06)nm和(249.68±38.18)nm;去掉生物膜后,SS304试片表面有明显点蚀痕迹,蚀坑最深处为541.24 nm,局部腐蚀速率相当于0.014 mm/a,而SS316L试片表面的蚀坑最深处为49.15 nm,局部腐蚀速率相当于0.001 mm/a。在浸泡后期SS304电极表面钝化膜开始出现点蚀,极化电阻比SS316L的低1~2个数量级。2种不锈钢表面形成SRB生物膜的过程是一个动态平衡过程。 The growth characteristics of sulfate reducing bacteria(SRB),which was isolated from the slurry of cooling tower in a power plant,in real reclaimed water were studied.The process of bio-film developed on surface of SS304 and SS316L samples immersed in real reclaimed water with SRB,and the electrochemical behavior of interface between samples and bio-film were investigated using atomic force microscopy,(AFM) and electrochemical impedance spectroscopy(EIS).The results show that this strain of SRB can survive in reclaimed water.Though SS316L exhibits a more intense adsorption to SRB cell,it still has higher resistance to bio-film corrosion of SRB than SS304.After 14d immersion,the surface roughness of SS304 and SS316L was(222.948 ±16.06) nm and(249.682 ±38.18) nm,respectively.Removed the bio-film,the deepest pits of local corrosion on SS304 and SS316L surface was 541.24 nm,with a rate equivalent to 0.014 mm/a and 49.15 nm,with a rate equivalent to 0.001 mm/a,respectively.In late immersion,the polarization resistance of SS304 electrode was lower 1~2 orders of magnitude than SS316L electrode.The development process of bio-film on the surface of SS304 and SS316L samples is a dynamic equilibrium process.
出处 《中国电机工程学报》 EI CSCD 北大核心 2010年第32期63-70,共8页 Proceedings of the CSEE
关键词 硫酸盐还原菌 中水 生物膜 不锈钢 原子力 显微镜 交流阻抗谱 sulfate reducing bacteria reclaimed water bio-film stainless steel atomic force microscopy electrochemical impedance spectroscopy
  • 相关文献

参考文献24

  • 1Beech I B, Sunner J. Towards understanding interaction between biofi/ms and metals , Current Opinion in biotechnology [J]. Biocorrosion, 2004, 15(3): 181-186.
  • 2李进 许兆义 张万友 等.硫酸盐还原菌作用下发电厂凝汽器铜镍合金的腐蚀行为研究.中国电机工程学报,2005,25(25):305-308.
  • 3Hardy J A, Utilization of cathodic hydrogen by sulphate-reducing bacteria[J]. British Corrosion Journal, 1983, 18(4): 190-193.
  • 4Beech I B. Sulfate-reducing bacteria in biofilms on metallic materials and corrosion[J]. Microbiology Today, 2003, 30(3): 115-117.
  • 5Moreno D A, Ibars J R, Ranninger C. et al. Technical note: use of potentiodynamic polarization to assess pitting of stainless steels by sulfate-reducingbactefia[J]. Corrosion, 1992, 45(3).. 226-229.
  • 6Stott J F D, What progress in the understanding of microbially induced corrosion has been made in the last 25 years A personal viewpoint[J]. Corrosion Science, 1993, 35(1-4): 667-673.
  • 7Feron D. Attachment ofdesulfovibrio vulgaris to steels: influence of alloying element[C]//Proceedings of the 3rd International EFC, London, 1995: 119.
  • 8Lopes F A, Morin P, Oliveira R, et al. The influence of nickel on the adhesion ability of desulfovibrio desulfuricans[J]. Colloids and Surfaces B: Biointerfaces, 2005, 46(2): 127-133.
  • 9Lopes F A, MorinP, OliveiraR. etal. Interaction ofDesulfovibrio desulfuricans biofilms with stainless steel surface and its impact on bacterial metabolism[J]. Journal of Applied Microbiology, 2006, 101(5): 1087-1095.
  • 10Sheng Xiaoxia, Ting Yenpeng , Simo Olavi Pehkonen. The influence of sulphate-reducing bacteria biofilm on the corrosion of stainless steelAISI316[J]. Corrosion Science, 2007, 49(5): 2159-2176.

二级参考文献20

  • 1林晶,阎永贵,陈光章,马力,钱建华.应用原子力显微镜研究硫酸盐还原菌对A3钢的腐蚀[J].中国腐蚀与防护学报,2007,27(2):70-73. 被引量:6
  • 2Videla H A. Biological corrosion and biofilm effects on metal biodeterioration[J].Biodeter. Res. 1989, 2:39-50
  • 3Devender K J. Microbial colonization of surface of stainless steel coupons in a deionized water system[J]. Water. Res., 1995, 29 (8): 1869-1876
  • 4Beer D, Stoodley P, Roe F, et al. Effects of biofilm structures on oxygen distribution and mass transport [J]. Biotechnol. Bioeng., 1994, 43(11): 1131-1138
  • 5Lee W C, de Beer D. Oxygen and pH microprofiles above corrosion mild steel covered with a biofilm [J]. Biofouling, 1995, 8(4): 273-280
  • 6Bremer P J, Geesey G G, Drake B. Atomic force microscopy examination of the topography of a hydrated bacterial biofilm on a copper surface [J]. Curr. Microbiol., 1992, 24(4): 223-230
  • 7Beech I B, Cheung C W S, Johnson D B, et al. Comparative studies of bacterial biofihns on steel surfaces using atomic force microscopy and environmental scanning electron microscopy [J]. Biofouling, 1996, 10(1-3): 65-77
  • 8Xu L C, Chan K Y, Fang H P. Application of atomic force microscopy in the study of microbiologically influenced corrosion [J]. Mater. Charact., 2002, 48(2/3): 195-203
  • 9方汉平 徐立冲 张彤.利用原子力显微镜和分子技术研究海水微生物腐蚀.电化学,2003,9(2):164-169.
  • 10Postgate J R. The Sulfate-reducing Bacteria (2nd ed.)[M]. Cambridge: Cambridge University Press, 1984, 32

共引文献20

同被引文献99

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部