期刊文献+

光伏电池微结构表面吸收率的温度依变性 被引量:2

原文传递
导出
摘要 光伏电池长时间处于太阳光照射下,自身温度随之升高,会造成电池材料的光学参数和热膨胀系数的变化,从而影响光伏电池微结构表面的吸收特性.本文从电磁场理论出发,借助时域有限差分方法(FDTD),通过对半球、圆柱、小球这三种典型光伏电池表面微结构的研究,分析温度对光伏电池表面吸收特性的影响,同时研究材料属性、结构周期对光伏电池表面吸收特性的影响.
出处 《中国科学:技术科学》 EI CSCD 北大核心 2010年第12期1514-1520,共7页 Scientia Sinica(Technologica)
基金 国家自然科学基金(批准号:50936002)资助项目
  • 相关文献

参考文献24

  • 1张红梅,尹云华.太阳能电池的研究现状与发展趋势[J].水电能源科学,2008,26(6):193-197. 被引量:23
  • 2成志秀,王晓丽.太阳能光伏电池综述[J].信息记录材料,2007,8(2):41-47. 被引量:59
  • 3徐慢,夏冬林,杨晟,赵修建.薄膜太阳能电池[J].材料导报,2006,20(9):109-111. 被引量:34
  • 4Ikeda K, Miyazaki H T, Kasaya T. Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities. Appl Phys Lett, 2008, 92:021117.
  • 5Carsten R, Falk L. Photon management by metallic nanodiscs in thin film solar ceils. Appl Phys Lett, 2009, 94:213102.
  • 6Chiu C H, Yu P C. Broadband and omnidirectional antireflection employing disordered GaN nanopillars. Opt Exp, 2008, 16(12): 8748-- 8754.
  • 7Irina P, William L S. Narrow-band, tunable infrared emission from arrays of microstrip patches. Appl Phys Lett, 2008, 92:021117.
  • 8Mapel J K, Singh M, Baldo M A. Plasmonic excitation of organic double hetero-structure solar cells. Appl Phys Lett, 2007, 90:121102.
  • 9Vivian E F, Luke A S, Domenico P, et al. Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett, 2008, 12(8): 4391--4397.
  • 10Barry P R, Peter P, Stephen R F. Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J Appl Phys, 2004, 96(12): 7519--7526.

二级参考文献54

共引文献119

同被引文献46

  • 1栾伟玲,涂善东.温差电技术的研究进展[J].科学通报,2004,49(11):1011-1019. 被引量:25
  • 2Chen X H, Pan Y Z, Chen J C. Performance and evaluation of a fuel cell-thermoelectric generator hybrid system. Fuel Cell, 2010, 10: 1164-1170.
  • 3Kuo J K, Hwang J J, Lin C H. Performance analysis of a stationary fuel cell thermoelectric cogeneration system. Fuel Cell, 2012, 10: 1104-1114.
  • 4Chan S, Ho H, Tian Y. Modelling of simple hybrid solid oxide fuel cell and gas turbine power plant. J Power Sources, 2002, 109: 111-120.
  • 5Li Y, Weng Y. Performance study of a solid oxide fuel cell and gas turbine hybrid system designed for methane operating with non-designed fuels. J Power Sources, 2011, 196: 3824-3835.
  • 6Wu X, Huang Q, Zhu X. Thermal modeling of a solid oxide fuel cell and micro gas turbine power system based on modified LS-SVM. Int J Hydrogen Energy, 2011, 36: 885-892.
  • 7Rizzoni G, Guzzella L, Baumann B M. Unified modeling of hybrid electric vehicle drivetrains. IEEE-ASME T Mech, 1999, 4: 246-257.
  • 8Burer M, Tanaka K, Favrat D, et al. Multi-criteria optimization of a district cogeneration plant integrating a solid oxide fuel cell-gas turbine combined cycle, heat pumps and chillers. Energy, 2003, 28: 497-518.
  • 9Cheddie D. Thermo-economic optimization of an indirectly coupled solid oxide fuel cell/gas turbine hybrid power plant. Int J Hydrogen Energy, 2011, 36: 1702-1709.
  • 10Wu X, Huang Q, Zhu X. Multi-loop control strategy of a solid oxide fuel cell and micro gas turbine hybrid system. J Power Sources, 2011, 196: 8444-8849.

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部