期刊文献+

洗涤效率对飞机燃油箱惰化过程的影响分析 被引量:9

Analysis of inerting process influenced by scrubbing efficiency in aircraft fuel tank
原文传递
导出
摘要 采用微元段计算方法,建立了燃油洗涤过程的数学模型,考虑到洗涤过程中的富氮气体不能和燃油中的溶解气进行充分的传质,故定义了洗涤效率.计算结果与文献公布的实验数据对比表明:引入洗涤效率后,计算值与实验值一致性更高.研究结果显示,在同样的富氮气体流量,且气相空间惰化效果一致的情况下,洗涤效率直接影响洗涤时间和燃油及气相空间中氧的体积分数.较低的洗涤效率虽然可使洗涤时间缩短,但是容易造成爬升至巡航高度后,油箱上部空间氧的体积分数增加幅度较大,且该影响随着载油量增加而加大,故应根据载油量、洗涤时间、洗涤气流量等综合考虑合适的洗涤效率.研究结果可为机载制氮系统的设计提供理论基础. The mass transfer between nitrogen-enriched air(NEA) and dissolved gas in the fuel could not be fully conducted,so the scrubbing efficiency was defined to set up the mathematical model of the scrubbing process based on infinitesimal method.The comparison between calculated results and experimental data revealed that,the introduction of the scrubbing efficiency could increase the simulated precision.The study results indicate that,the scrubbing efficiency has direct impacts on the total scrubbing time,the oxygen concentration in fuel and on ullage under the same NEA flow rate and inerting effect.The lower scrubbing efficiency could save the total scrubbing time,but the higher oxygen concentration on ullage occurs when the aircraft reaches a cruising altitude,and the influence is positively related to the fuel loads.Therefore,a proper scrubbing efficiency should be determined and considered from the fuel load,scrubbing time and NEA flow rate.The present study lays a preliminary theoretical foundation for the design of on-board inert gas generator system.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2010年第11期2457-2463,共7页 Journal of Aerospace Power
基金 航空科学基金(2007ZC52038) 611航空科研基金
关键词 机载惰化系统 油箱惰性化 洗涤效率 数学模拟 防火防爆 on-boarding inert gas generator system; fuel tank inerting; scrubbing efficiency; numerical simulation; fire and explosion protechtion;
  • 相关文献

参考文献13

二级参考文献42

  • 1肖华军,袁修干.机载分子筛制氧技术发展的现状与动向[J].航空科学技术,1997(1):26-28. 被引量:21
  • 2[2]William M.C.Developing a fuel-tank inerting system[J].Aircraft Survivability,Published by the Joint Aircraft Survivability Program Office,2005,20-23.
  • 3[3]Thomas L.R.,Delbert B.B,Daniel F.L.,Conrad M.R.Onboard Inert Gas Generation System/Onboard Oxygen Gas Generation System (OBIGGS/OBOGS) Study,Part I:Aircraft System Requirements[J].NASA/CR-2001-210903,2001,(5).
  • 4[4]Thomas L.R.,Delbert B.B,Daniel F.L.,Conrad M.R.Onboard Inert Gas Generation System/Onboard Oxygen Gas Generation System (OBIGGS/OBOGS) Study,Part II:Gas Separation Technology-State of the Art[J].NASA/CR-2001-210950,2001,(5).
  • 5[5]Robert C.M.,Martin L.L..Fuel tank explosion protection for large aircraft[J].Aircraft Survivability,Published by the Joint Aircraft Survivability Program Office,2005,16-17.
  • 6[6]Robertg C..The evolution of on-board inert gas generation systems (OBIGGS)[J].SAFE Journal,1990,(20):45-50.
  • 7[7]A.F.Grenich,F.F.Tolle,G.S.Glenn,W.J.Yagle.Design of on-board inert gas generation systems for military aircraft[J].San Diego,California,1984,(84):2518.
  • 8[8]Russ H..F-22 OBIGGS Monitor Zirconia Oxygen Sensor Technology-A Design and Logistical Benefit Analysis[J].SAFE Association 41st Annual Symposium Proceedings,2003.
  • 9[9]Michael B.,William M.C.,Richard H.,Robert M..Flight-testing of the FAA Onboard Inert Gas Generation System on an Airbus A320[J].DOT/FAA/AR-03/58 2004.
  • 10[10]William M.C..Modeling in-flight inert gas distribution in a 747center wing fuel tank[J]Toronto,Ontario Canada,2005,AIAA2005-4906.

共引文献86

同被引文献74

引证文献9

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部