期刊文献+

变结构DDBNs的推理算法与多目标识别 被引量:13

Inference Algorithm of Variable Structure DDBNs and Multi-target Recognition
原文传递
导出
摘要 目前变结构离散动态贝叶斯网络(DDBNs)的推理算法存在的缺陷是计算量随时间片数的增加呈指数增长。为了解决这类网络的推理问题,引入前向后向算法的基本思想,提出一种新的变结构DDBNs的推理算法。在分析变结构DDBNs数据结构的基础上,定义变结构DDBNs的前向、后向算子,从理论上对算法进行了推导,它的计算量仅与时间片数成线性关系。并且把该算法应用于识别空中多目标的变结构DDBNs,通过有效融合"交战行为"节点信息,使识别系统的鲁棒性显著增强。仿真结果验证了推理算法的有效性。 The current inference algorithm on variable structure discrete dynamic Bayesian networks(DDBNs) suffers from the drawback of exponential growth in complexity as time slices increase.To solve this problem, this article introduces the basic idea of a forward-backward algorithm,and proposes a new inference algorithm of variable structure DDBNs.On the basis of an analysis of the data structure of the variable structure networks,the forward operator and backward operator of variable structure DDBNs are defined and the algorithm deduced in theory,whose amount of calculation has a linear relationship with the number of the time slices.In addition,the algorithm is applied to variable structure DDBNs to identify air multi-targets.By fusing the information of the"engagement behavior"node efficiently,the robustness of the identifying system is strengthened significantly.The validity of this algorithm is proved by the simulation results.
出处 《航空学报》 EI CAS CSCD 北大核心 2010年第11期2222-2227,共6页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(60774064)
关键词 信息传播 贝叶斯网络 不确定性 数据结构 模型 information dissemination Bayesian networks uncertainty data structure model
  • 相关文献

参考文献15

二级参考文献59

  • 1潘泉,于昕,程咏梅,张洪才.信息融合理论的基本方法与进展[J].自动化学报,2003,29(4):599-615. 被引量:183
  • 2孙连霞,穆荣军,崔乃刚.多传感器信息融合联邦滤波一般模型的理论与仿真研究[J].航空兵器,2006,13(4):7-10. 被引量:3
  • 3穆荣军,崔乃刚.多传感器分层多级变结构组合导航信息融合方法[J].上海航天,2007,24(1):6-11. 被引量:2
  • 4杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 5Bengio Y. Markovian models for sequential data. Neural Computing Surveys, 1999, 2:129-162.
  • 6Gu H Y, Tseng C Y, Lee L S. Isolated-utterance speech recognition using hidden Maxkov models with bounded state durations. IEEE Transactions on Signal Processing, 1991, 39(8): 1743-1752.
  • 7Levinson S E. Continuously variable duration hidden Markov models for automatic speech recognition. Computer Speech and Language, 1986, 1(1): 29-45.
  • 8Russell M J, Moore R K. Explicit modeling of state occupancy in hidden Markov models for automatic speech recognition. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Florida, USA: IEEE, 1985. 5-8.
  • 9Duong T V, Bui H H, Phung D Q, Venkatesh S. Activity recognition and abnormality detection with the switching hidden semi-Markov model. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 838-845.
  • 10Murphy K P. Dynamic Bayesian Network: Representation, Inference and Learning [Ph. D. dissertation], University of California, USA, 2002.

共引文献245

同被引文献164

引证文献13

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部