期刊文献+

Boosting优化决策树的带钢表面缺陷识别技术 被引量:10

Strip steel surface defect recognition based on Boosting optimized decision tree
原文传递
导出
摘要 基于图像信息的缺陷识别技术是带钢表面缺陷检测系统中的关键技术之一。通过采用单一的分类技术或者一步到位的创建分类器,对复杂带钢表面缺陷图像进行识别很难达到理想的效果。提出了用Boosting算法结合SLIQ决策树建立组合分类器来识别带钢表面缺陷的方法。Boosting算法通过适应性权重技术和带权重的投票方法,建立并组合多个功能互补的分类器,组合分类器通过优势互补的方法有效地提高单个分类器的性能;而SLIQ决策树算法的数据预排序和广度优先技术对大规模数据分类具有速度优势,适合于作为单个分类器的弱学习算法。对实际带钢表面缺陷数据集进行测试,Boosting优化SLIQ决策树的组合分类器对缺陷识别的准确率达到了90%以上。 Defect recognition based on image information is one of the key technologies in strip steel surface automatic inspection system.Applying a single type of classification technology or building classifier in one step,image classification of complex strip steel defects is very difficult to achieve the desire result.In this paper,a combination classifier based on Boosting algorithm and SLIQ decision tree was presented.With adaptive weight updating and weighted voting,Boosting algorithm could build and combine multiple functional complementary classifiers,and improve recognition performance effectively compared with a single classifier.Through data pre-sorting and breadth-first growing methods,SLIQ decision tree was fit for large data processing and could be used in weak learning algorithm of each single classifier.Tests on real strip steel surface defect datasets were carried out.The result shows that combination classifiers of Boosting optimized SLIQ decision tree can improve the accuracy of defects recognition up to 90%.
出处 《红外与激光工程》 EI CSCD 北大核心 2010年第5期954-958,共5页 Infrared and Laser Engineering
基金 国家自然科学基金资助项目(60736010)
关键词 图像识别 带钢 表面缺陷 BOOSTING Image recognition Strip steel Surface defects Boosting
  • 相关文献

参考文献10

  • 1吴平川,路同浚,王炎.带钢表面自动检测系统研究现状与展望[J].钢铁,2000,35(6):70-75. 被引量:35
  • 2Keesug Choi, Kyungmo Koo, LEE J S. Development of defect classification algorithm for POSCO rolling strip surface inspection system [C]// SlCE-ICASE International Joint Conference, 2006: 2499-2502.
  • 3王宏波,庄志洪,张清泰.基于动态红外图像的飞机姿态识别方法研究[J].红外与激光工程,2003,32(1):8-12. 被引量:10
  • 4李敏,周振华,张桂林.自动目标识别算法性能评估中的图像度量[J].红外与激光工程,2007,36(3):412-416. 被引量:10
  • 5QUINLAN J R. C4.5: Programs for Machine Learning[M]. San Francisco, CA: Morgan Kaufmann Publishers, 1993.
  • 6MEHTA M, AGRAWAL R, RISSANEN J. SLIQ: a fast scalable classifier for data mining [J]. Lecture Notes in Computer Science, 1996, 1057: 18-30.
  • 7VALIANT L G. A theory of the learnable[J].Communication of ACM, 1984, 27(11): 1134-1142.
  • 8SCHAPIRE R E. The strength of weak leaning ability [J]. Machine Learning, 1990, 5(2): 197-227.
  • 9FREUND Y, SCHAPIRE R E. Experiments with a new Boosting algorithm [C]// Machine Learning: Proceedings of 13th Interactional Conference, 1996: 148-156.
  • 10FREUND Y. Boosting a weak algorithm by majority [J] Information and Computation, 1995, 121(2): 256-285.

二级参考文献19

  • 1张桂林.数字电视跟踪系统中的实时图象分割[J].数据采集与处理,1989,4(3):27-33. 被引量:4
  • 2罗志勇,刘栋玉,江涛,王斌.新型冷轧带钢表面缺陷在线检测系统[J].华中理工大学学报,1996,24(1):75-78. 被引量:18
  • 3[1]Koichi Tanaka, Mustuo Sano, Syuichi Ohara, et al. A parametric template method and its application to Robust matching[J]. IEEE Trans PAMI, 2000, 22(3): 620-627.
  • 4[2]Clark F Olson, Daniel P Huttenlocher. Automatic target recognition by matching oriented edge pixels [J]. IEEE Trans Image Processing, 1997, 6(1): 103-113.
  • 5[3]Behrooz Kamgar-Parsi, Anil K Jain. Automatic aircraft recognition: toward using human similarity measure in a recognition system [J]. IEEE Trans PAMI, 1999, 21(3): 268-273.
  • 6[4]Rickard Lindberg. Identification of fighter aircraft [A]. Part of the SPIE Conference on Signal Processing, Sensor Fusion, and Target Recognition VII[C]. 1998,3374.223-229.
  • 7[5]Goldberg D E. Optimization and Machine Learning [M]. Massachusetts: Addison Wesley, 1989.
  • 8张大鹏,模式识别与图像处理并行计算机系统设计,1998年
  • 9孟宪超,硕士学位论文,1996年
  • 10钟玉琢,机器人视觉技术,1994年

共引文献52

同被引文献146

引证文献10

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部