期刊文献+

孪生素数椭圆曲线E_的整数点(英文) 被引量:12

THE INTEGRAL POINTS ON TWIN PRIMES ELLIPTIC CURVE E_
下载PDF
导出
摘要 设p和q是孪生素数. 本文讨论了椭圆曲线E?上的非平凡整数点. 运用初等数论方法证明了该椭圆曲线至多有1组非平凡整数点(x,±y). In this article, let p and q be twin primes, the non-trivial integral points on the elliptic curve E_ : y^2 = x(x - p)(x - q) are discussed. Using elementary number theory methods, we prove that this elliptic curve has at most one pair of non-trivial integral points (x,±y).
机构地区 贺州学院数学系
出处 《数学杂志》 CSCD 北大核心 2010年第6期991-1000,共10页 Journal of Mathematics
基金 Supported by the National Natural Science Foundation of China (10971184) Natural Science Fund of GuangXi Education Department
关键词 孪生素数椭圆曲线 非平凡整数点 DIOPHANTINE方程 twin primes elliptic curve non-trivial integral point diophantine equation
  • 相关文献

参考文献9

  • 1邱德荣,张贤科.Mordell-Weil groups and Selmer groups of twin-prime elliptic curves[J].Science China Mathematics,2002,45(11):1372-1380. 被引量:11
  • 2邱德荣,张贤科.Elliptic Curves of Twin—Primes Over Gauss Field and Diophantin …[J].数学进展,2000,29(3):279-281. 被引量:13
  • 3Gary Walsh.A note on a theorem of Ljunggren and the Diophantine equations x2–kxy2 + y4 = 1, 4[J]. Archiv der Mathematik . 1999 (2)
  • 4Le M H.On the simultaneous Pell equation x2 - D1y2 = δ and z2 - D2y2 = δ. Advances in Mathematics . 2001
  • 5Ireland K,Rosen M.A Classical Introduction to Modern Number Theory. Graduate Texts in Mathematics . 1982
  • 6Cohn J E.The Diophantine equation y 2=Dx4+1. Math.Scand . 1978
  • 7Baker,A.The diophantine equationy2=ax3+bx2+cx+d. Journal of the London Mathematical Society . 1968
  • 8R. J. Stroeker,N. Tzanakis.Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms. Acta Arithmetica . 1994
  • 9Petr,K.Sur l’eqution de Pell. C asopis Pest.Mat,Fys . 1927

二级参考文献5

  • 1邱德荣,数学进展,1999年,28卷,475页
  • 2Qiu Derong,Mordell-Weil Groups and Selmer Groups of Two Types of Elliptic Curves
  • 3Derong Qiu,Xianke Zhang.Elliptic curves and their torsion subgroups over number fields of type (2, 2, ..., 2)[J].Science in China Series A: Mathematics.2001(2)
  • 4Cassels,J. W. S.Lectures on Elliptic Curves, LMS Student Texts, Cambridge: Cambridge Univ[]..1991
  • 5Cremona,J. E.Algorithms for Modular Elliptic Curves, Cambridge: Cambridge Univ[]..1992

共引文献19

同被引文献32

引证文献12

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部