期刊文献+

基于聚类分析和神经网络的高炉焦比预测模型 被引量:5

A prediction model for blast furnace coke ratio with clustering analysis and neural network
下载PDF
导出
摘要 为降低高炉生产焦炭的消耗,对高炉操作参数和燃料比指标进行关联性分析,提出了一种组合聚类分析与神经网络进行高炉焦比指标预测的方法。聚类分析将数据集聚划分为几类,数据的相似度比较高,分类训练相应的神经网络模型,实现高炉焦比指标的预测。结合聚类分析构建的神经网络模型,用某高炉生产数据进行仿真学习,并跟传统的神经网络模型进行比较。结果表明,加入聚类分析的神经网络模型平均绝对误差降低3.13 kg/t,平均相对误差降低5.19%。 In order to reduce the coke consumption of blast furnace, a relevance analysis is carried out for operation parameters and fuel ratio of blast furnce, and a prediction method that is combining clustering analysis and neural network for coke ratio of blast furnace is proposed. The data cluster is divided into seveval classes by clustering analysis, the data similarity is high, and the neural network model is used to realize the prediction of coke ratio. By combining the neural network with clustering analysis, the data in one blast furnace is simulated, and the results are compared with the traditional neural network model. The results show that the improved neural network has a higher accuracy, the average absolute error can be decreased by 3.13 kg/t, and the average relative error can be decreased by 5.19%.
出处 《辽宁科技大学学报》 CAS 2010年第3期245-247,257,共4页 Journal of University of Science and Technology Liaoning
关键词 聚类分析 神经网络 预测 高炉 焦比 clustering neural network prediction blast furnace coke ratio
  • 相关文献

参考文献4

二级参考文献21

  • 1崔党群,林德光.通径分析的矩阵算法[J].生物数学学报,1994,9(1):71-76. 被引量:38
  • 2黄天佑,于震宗,陈全芳,陈日兴,隆以国.铸造工业的计算机专家系统[J].铸造,1989,38(8):27-30. 被引量:5
  • 3楼顺天 施阳.基于MATLAB的系统分析与设计--神经网络[M].西安:西安电子科技大学出版社,1999..
  • 4沈清 胡得文 等.神经网络应用技术[M].国防科技大学出版社,1998.127-156.
  • 5胡守仁.神经网络导论[M].长沙:国防科技大学出版社,1999..
  • 6Porter B W, Baress E R, Holte R.Concept learning and heuristic classification in weak theory domains[J]. Artificial Intelligence, 1990,45(2):229-263.
  • 7Yang M S.On a class of fuzzy classification maximum likelihood procedures[J]. Fuzzy Sets and Systems, 1993,57:365-375.
  • 8Mandal D P. Partitioning of feature space for pattern classification[J]. Pattern Recognition, 1997,30(12):1971-1990.
  • 9Tamura S, Higuchi S, Taraka K. Pattern classification based on fuzzy relations[J]. IEEE Transaction on Systems Man and Cybernetics, 1971,1(1):61-66.
  • 10Miyamoto S, Nakayama K.Similarity measures based on a fuzzy set model and application to hierarchical clustering[J]. IEEE Trans System Man Cybernet, 1986,16(3):479-482.

共引文献38

同被引文献90

引证文献5

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部