期刊文献+

聚合物太阳能电池光敏层材料及形貌的研究进展 被引量:1

Research Progress in the Materials and Morphology of Active Layer in Polymer Solar Cells
下载PDF
导出
摘要 聚合物太阳能电池由于质量轻、成本低、柔韧性好及制备工艺简便等优点而具有巨大的潜在应用价值,是太阳能电池发展的新方向。但是聚合物太阳能电池的能量转换效率较低,达不到商业化应用的要求,如何提高电池效率仍是目前研究的重点。聚合物材料和光敏层的形貌是影响太阳能电池性能的两大要素,从机理方面分析了限制太阳能电池效率的一些因素,介绍了聚合物材料的新进展,探讨了聚合物材料设计的原则及方法,着重探讨了形貌对太阳能电池性能的影响以及改进形貌的方法及其理论基础,并展望了聚合物太阳能电池未来的发展趋势。 Polymer bulk heterojunction solar cells have great potential for practical applications owing to their light weight, low cost, good flexibility and simple fabrication. Significant efforts are made to improve photoelectric conversion efficiency of polymer solar cells, but it's still hard to meet the requirements of commercial applications sufficiently. How to improve the conversion efficiency is the pivotal problem. The critical factors limiting polymer solar cells' conversion efficiency are analyzed and recent development and the design rules of novel materials for polymer solar cells are reviewed, The effect of morphology for power conversion efficiency and the possible strategies for optimizing the morphology are summarized and highlighted.
出处 《材料导报》 EI CAS CSCD 北大核心 2010年第21期45-50,共6页 Materials Reports
基金 陕西省自然科学基金(2009JZ004)
关键词 聚合物太阳能电池 材料 形貌 机理 效率 polymer solar cells, materials, morphology, mechanism, power conversion efficiency
  • 相关文献

参考文献45

  • 1施敏敏,陈红征,吴刚,汪茫.有机太阳电池面临的机遇、问题和对策[J].电源技术,2008,32(10):709-712. 被引量:1
  • 2O. Ingan?s,M. Svensson,F. Zhang,A. Gadisa,N.K. Persson,X. Wang,M.R. Andersson.Low bandgap alternating polyfluorene copolymers in plastic photodiodes and solar cells[J]. Applied Physics A . 2004 (1)
  • 3Heindel T,Schneider C,Lermer Met al.Electrically dri-ven quantum dot-micropillar single photon source with 34%overall efficiency. Applied Physics Letters . 2010
  • 4King R R,Law D C,Edmondson K Met al.40%efficientmetamorphic GaInP/GaInAs/Ge multijunction solar cells. Applied Physics Letters . 2008
  • 5He Y J,Chen H Y,Hou J Het al.Indene-C60bisadduct:A new acceptor for high-performance polymer solar cells. Journal of the American Chemical Society . 2010
  • 6Jespersen K G,Zhang Fet al.Charge formation and trans-port in bulk-heterojunction solar cells based on alternatingpolyfluorene copolymers blended with fullerenes. OrgElectron . 2006
  • 7Renz J A,Troshin P A,Gobsch Get al.Fullerene solubili-ty-current density relationship in polymer solar cells. Phys Status Solidi (RRL) . 2008
  • 8Mihailetchi V D,Xie H Xet al.Origin of the enhancedperformance in poly (3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester solar cells upon slow drying of theactive layer. Applied Physics Letters . 2006
  • 9Jo J,,Na S I,Kim S S,et al.Three-dimensional bulk he-terojunction morphology for achieving high internal quantumfficiency in polymer solar cells. Advanced Functional Materials . 2009
  • 10Park J H,Kim J S,Lee J Het al.Effect of annealing sol-vent solubility on the performance of poly (3-hexylthio-phene)/methanofullerene solar cells. J Phys Chem C . 2009

二级参考文献13

  • 1LI G, SHROTRIYA V, HUANG J, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends[J]. Nature Mater, 2005, 4(11): 864-868.
  • 2MA W, YANG C, GONG X, et al. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology[J]. Adv Funct Mater, 2005, 15(10): 1617-1622.
  • 3SCHARBER M C, MUHLBACHER D, KOPPE M, et al. Design rules for donors in bulk-heterojunction solar cells - towards 10% energy-conversion efficiency[J]. Adv Mater, 2006, 18(6): 789-794.
  • 4YU G, GAN J, HUMMELEN J C, et al. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J]. Science, 1995, 270(5243): 1789-1791.
  • 5CAMPOS L M,TONTCHEVA A, GUNES S, et al. Extended photocurrent spectrum of a low band gap polymer in a bulk heterojunction solar cell[J]. Chem Mater, 2005, 17(16): 4031-4033.
  • 6SHI C,YAO Y, YANG Y, et al. Regioregular copolymers of 3-alkoxythiophene and their photovoltaic application[J]. J Am Chem Soc, 2006, 128(27): 8980-8986.
  • 7ZHOU Q,HOU Q,ZHENG L,et al.Fluorene-based low band-gap eopolymers for high performance photovoltaic devices [J]. Appl Phys Lett, 2004, 84(10): 1653-1655.
  • 8SVENSSON M, ZHANG F, VEENSTRA S C, et al. High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative[J].Adv Mater, 2003, 15(12): 988-991.
  • 9ZHANG F, MAMMO W, ANDERSSON L M, et al. Low-bandgap alternating fluorene copolymer/methanofullerene heterojunctions in efficient near-Infrared polymer solar cells[J]. Adv Mater, 2006, 18 (16): 2169-2173.
  • 10PEET J, KIM J Y, COATES N E, et al. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols [J]. Nature Mater, 2007, 6(7): 497-500.

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部