摘要
目的:应用有限元分析的方法,模拟腰椎侧凸矫形手术,探讨内固定螺钉位置对脊柱侧凸矫形的效果。方法:利用Simpleware软件建立L1~L5侧凸的三维有限元模型,侧凸角40°。在此模型上设计6组(A~F组)凹侧椎弓根螺钉置入计划,其中A-E组为5个椎体依次空缺1个螺钉,F组作为对照行5个椎体置钉,连接矫形棒。应用ANSYS和ADAMS软件,计算矫形过程中反旋转和回弹时置入物所受载荷(最大扭矩及最大拔出力)以及脊椎的应力应变场。结果:6组矫形结束后的侧凸角分别为30°、23°、25°、22°、29°、21°。所需最大扭矩分别为3.1N·m、3.3N·m、4.6N·m、3.4N·m、4.2N·m和3.3N·m。螺钉所承受最大拔出力分别为418N、383N、437N、395N、420N和380N。结论:在保持一定固定范围条件下,间断减少非弧顶固定螺钉,在三维有限元模型上可得到较好的矫形效果。
Objective:To simulate the correction surgery of lumbar scoliosis by finite element analysis and investigate the effect of instrument segments on the correction rate of lumbar scoliosis.Method:A detailed three-dimensional finite element scoliotic model of L1-L5 with a Cobb angle of 40°on sagittal plane was es- tablished by using Simpleware software.Six types(group A-F)of pedicle screw instrumentations on concave side were designed on the model (of these,uniscrew placement in each vertebral body of group A-E,while biscrew placement in each vertebral body of group F).The spinal stress and strain field during with respect to anti- rotation and the rebound in the process of correction were meassured by using software ANSYS and ADAMS software.Result:The scoliostic angle after correction was 30°,23°,25°,22°,29°and 21°respectively for group A to E.The maximum torque was 3.1N·m,3.3N·m,4.6N·m,3.4N·m,4.2N·m and 3.3N·m,the maximum pull out force was 418N,383N,437N,395N,420N and 380N.Conclusion:Under definite circumstances,decreasing nonarc vertebrae screws can yield good correction at least in finite element model.
出处
《中国脊柱脊髓杂志》
CAS
CSCD
北大核心
2010年第11期895-897,共3页
Chinese Journal of Spine and Spinal Cord
关键词
脊柱侧凸
生物力学
有限元分析
Spine scoliosis
Biomechanics
Finite element analysis.