期刊文献+

利用SVM与灰度共生矩阵从QuickBird影像中提取枇杷信息 被引量:7

Study on Extracting of Loquat Information Using SVM and Gray-level Co-occurrence Matrix from QuickBird Image
原文传递
导出
摘要 以福建省莆田市东圳水库库区为例,采用QuickBird卫星影像,利用主成分分析方法对灰度共生矩阵方法提取的地物纹理特征进行筛选,选择最佳的影像纹理特征,组成新的波段组合,并应用支持向量机方法(Support Vector Machine,SVM)进行枇杷树的提取分类,最后与只依靠光谱信息来分类的SVM法分类结果进行比较,其分类总精度由原来的71.33%提高到了86.67%,Kappa系数也由原来的0.6410提高到了0.8293,分类精度明显提高,表明光谱信息加入纹理特征信息能辅助并提升高分辨率遥感枇杷树信息提取的精度。 We take Dongzhen Reservoir district of Putian as an example and present a methodology of exracting loquat information using support vector machine-SVM and gray-level co-occurrence matrix from QuickBird image.Firstly,this paper calculating the textural measures using grey level co-occurrence matrix and determining the optimum parameters for textural information by principal component analysis.Then the support vector machine was applied to classify the remote sensing imagery of the study area.Comparing with the result which depends only on spectrum information.The total classification accuracy for the for-mer method has rised to 86.67%from 71.33%.Kappa coefficient change from 0.6410to 0.8293.The in-crease of classification accuracy of exracting loquat information indicates that it is an effective method to fuse spectral and textural information on high-resolution remote sensing classification.
出处 《遥感技术与应用》 CSCD 北大核心 2010年第5期695-699,共5页 Remote Sensing Technology and Application
基金 福建省科技厅青年人才项目(2006F3111) 福建省教育厅A类项目(JA08205)
关键词 支持向量机 灰度共生矩阵 遥感 纹理 枇杷 Support Vector Machine Grey level co-occurrence matrix Remote sensing Texture Loquat
  • 相关文献

参考文献7

  • 1汤井田,胡丹,龚智敏.基于SVM的图像纹理特征分类研究[J].计算机工程与科学,2008,30(8):44-45. 被引量:10
  • 2Fabio D A,Paolo G.Texture Based Characterization of UrbanEnvironments on Satellite SAR Images. IEEE Tranctionson Geoscience and Remote Sensing . 2003
  • 3Hsu C W,Chang C C,Lin C J.A Practical Guide to SupportVector Classification. http://www.csie.ntu.edu.tw/~cjlin/ .
  • 4Vapnik VN.The Nature of Statistical Learning Theory. . 1995
  • 5Vladimir N Vapnik.Statistical Learning Theory. . 1998
  • 6Haralick R M,Shanmugam K,Dinstein I.Texture features for image classification. IEEE Transactions on Systems Man and Cybernetics . 1973
  • 7Marceau D J,Howaeth P J,Dubois J M,et al.Evaluation of the gray-level co-occurrence matrix method for land-cover classification using SPOT imagery. IEEE Transactions on Geoscience and Remote Sensing . 1990

二级参考文献6

共引文献9

同被引文献108

引证文献7

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部