期刊文献+

一种具有自适应迁移能力的多粒子群协同优化算法 被引量:4

Cooperative Particle Swarm Optimization Algorithm Based on Adaptive Migratory Operator
下载PDF
导出
摘要 基于群熵的概念提出了一种具有自适应迁移能力的多种群PSO算法.对2个著名的基准函数进行测试,结果表明:与经典PSO和多种群协同PSO等算法相比,新算法能更有效地控制粒子群的多样性,从而提高了算法的收敛精度,改善了算法的优化性能. This paper presents an adaptive migratory PSCO base on the concept of population entropy.The experiment results conducted on two benchmark functions show the proposed method are superior to traditional cooperative PSO,especially in controlling the diversity of swarm.That is,the new algorithm can effectively avoid local optimum and enhance the performance of global searching.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第6期772-777,共6页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金资助项目(60873179) 高等学校博士学科点专项科研基金项目(20090121110032) 福建省高校服务海西重点项目(闽教高(2009)8号) 福建省自然科学基金资助项目(2008J0024) 福建省教育厅重点项目(JK2009017),福建省教育厅项目(JA10196) 厦门市科技计划项目(3502Z20093018)
关键词 粒子群优化 迁移算子 种群熵 particle swarm optimization migration operator population entropy
  • 相关文献

参考文献13

  • 1Kennedy J, Eberhart R. Particle swarm optimization[C]// International Conference on Neural Networks. Perth, Aust ralia: IEEE, 1995 : 1942-1948.
  • 2Alici G,Jagielski R, Sekercioglu Y A, et al. Prediction of geometric errors of robot manipulators with particle swarm optimization method [ J ]. Robotics and Autonomous Systems, 2006,54(12) : 956-966.
  • 3Hong W C. Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model[J]. Energy Conversion and Management, 2009,50 (1) :105-117.
  • 4Shi Y,Eberhart R. Empirical study of particle swarm optimization[C]//International Conference on Evolutionary Computation. Washington,USA: IEEE, 1999. 1945-1950.
  • 5Parsopoulos K E,Vrahatis M N. Parameter selection and adaptation in unified particle swarm optimization[J]. Mathematical and Computer Modelling, 2007, 46: 198- 213.
  • 6Shi Y, Eberhart R. Fuzzy adaptive particle swarm optimization [ C]//Proceedings of Congress on Evolutionary Computation. Seoul, Korea: IEEE, 2001 : 101-106.
  • 7Ratnawecra A, Halgamuge S. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J ]. Evolutionary Computation, 2004, 8 (3) : 240-255.
  • 8Cai G R,Chen S L,Guo W Z,et al. Study on the nonlinear strategies of inertia weight in particle swarm optimization [C]//Proceedings of the Congress on Natural Computing. Jinan, China : IEEE, 2008. 886-891.
  • 9Kennedy J, Mendes R. Population structure and particle swarm can learn from its environment[C]//Proceedings of the Congress on Evolutionary Computation. Hawaii,USA:IEEE,2002 : 1671-1676.
  • 10段晓东,高红霞,刘向东,张学东.一种基于种群熵的自适应粒子群算法[J].计算机工程,2007,33(18):222-223. 被引量:19

二级参考文献29

  • 1张丽平,俞欢军,陈德钊,胡上序.粒子群优化算法的分析与改进[J].信息与控制,2004,33(5):513-517. 被引量:85
  • 2段晓东,王存睿,王楠楠,刘向东,石丽.一种基于粒子群算法的分类器设计[J].计算机工程,2005,31(20):107-109. 被引量:13
  • 3曾建潮,崔志华.微粒群算法的统一模型及分析[J].计算机研究与发展,2006,43(1):96-100. 被引量:25
  • 4Kennedy J, Eberhart R. Particle swarm optimization [A]. Proc of Int'l Conf on Neural Networks [C]. Piscataway: IEEE Press, 1995. 1942-1948.
  • 5Eberhart R, Kennedy J. A new optimizer using particle swarm theory [A]. Proc of Int'l Symposium on Micro Machine and Human Science [C]. Piscataway: IEEE Service Center, 1995. 39-43.
  • 6Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization [A].In: Furuhashi T,Mckay B,eds. Proc Congress on Evolutionary Computation [C]. Piscataway: IEEE Press, 2001.
  • 7Lovbjerg M, Rasmussen T K, Krink T. Hybrid particle swarm optimiser with breeding and subpopulations [A]. In: Spector L,eds. Proc of Genetic and Evolutionary Computation Conference [C]. San Fransisco: Morgan Kaufmann Publishers Inc, 2001. 469-476.
  • 8Carlisle A, Dozier G. Adapting particle swarm optimization to dynamic environments [A]. In: Arabnia H R,eds. Proc of Int'l Conf on Artificial Intelligence [C]. Las Vegas: CSREA Press, 2000. 429-434.
  • 9Parsopoulos K E, Vrahatis M N. Particle swarm optimization method in multiobjective problems [A]. In: Panda B,eds. Proc of ACM Symposium on Applied Computing [C]. Boston: ACM Press, 2002. 603-607.
  • 10Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58-73.

共引文献452

同被引文献40

  • 1史有涛.论结构优化设计[J].建筑科学,2006,22(3):74-77. 被引量:9
  • 2Wu YW, Shih H-A, Chan H-C. The Analytic Network Process for Partner Selection Criteria in Strategic Alliances [J]. Expert Systems with Applications ,2009,36(3) :4646-4653.
  • 3Fei Ye,Yi-Na Li. Group Multi-Attribute Decision Model to Partner Selection in the Formation of Virtual Enterprise under Incomplete Information[J]. Expert Systems with Applications, 2009,36(5) : 9350- 9357.
  • 4Jungtae Mun,Moonsoo Shin,Kyunghuy Lee,Mooyoung Jung. Manufacturing Enterprise Collaboration Based on a Goal-Oriented Fuzzy Trust Evaluation Model in a Virtual Enterprise [J]. Computer & Industrial Engineering, 2009,56(3 ) : 888-901.
  • 5Rajesh Kumar,Debendra Sharma,Abhinav Sadu. A Hybrid Multi-Agent Based Particle Swarm Optimizstion Algorithm for Economic Power Dispatch [J]. Electrical Power and Energy Systems,2011,33 ( 1 ) : 115- 123.
  • 6R J Kuo,S Y Hong,Y C Huang. Integration of Particle Swarm Optimization-Based Fuzzy Neural Network and Artificial Neural Network for Supplier Selection [J].Applied Mathematical Modelling,2020,34 ( 12 ) : 3976-3990.
  • 7段晓东,高红霞,刘向东,张学东.一种基于种群熵的自适应粒子群算法[J].计算机工程,2007,33(18):222-223. 被引量:19
  • 8BOGDAN Bochenek? PAWEL Forys. Structural opti-mization against instability using particle swarms[C].6th World Congresses of Structural and Multidiscipli-nary Optimization: Rio de Janeiro. Brazil, 30May-03June, 2005.
  • 9KAZUHIRO Izui? SHINJI Nishiwaki, MASATAKAYoshimura. Swarm optimization algorithms incorpora-ting design sensitivities [C]. 6xh World Congresses ofStructural and Multidisciplinary Optimization: Rio deJaneiro. Brazil,30May-03 June, 2005.
  • 10CLAUSIUS. R. Ober die Warmeleitung gasformigerKorper [ J ]. Annalen der Physik, 1865,125(1):353400.

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部