期刊文献+

基于SMF的遥感图像纹理目标识别方法 被引量:2

Standard model feature-based object recognition method for remote sensing images
原文传递
导出
摘要 提出使用标准模型特征(SMF)在遥感图像中提取和识别纹理目标的方法.在预处理阶段进行纹理区域划分,根据纹理差异将图像划分为多个可能目标和背景区域;在识别阶段,对于每个可能的目标区域,运用SMF判定区域中每一像素所属类别,以区域中大部分像素的类别作为该区域的类别,从而排除非目标区域,获得目标区域,得到识别结果.实验表明SMF是识别遥感图像纹理目标的有效特征. A method for extracting and recognizing texture-based objects in remote sensing images was described by using SMF(standard model features).Texture regions partition was performed,and an image was divided into multiple possible object and background regions according to texture difference.In recognition phase,for each possible object region,SMF were calculated to classify the pixels of the region into object or background,and the class of the region was determined by the majority of pixels.Using this method,the non-object regions are excluded and object regions can be determined. Thus,recognition result is acquired.Experiments demonstrate that SMF is effective for recognition of texture-based objects in remote sensing images.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第11期33-36,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家高技术研究发展计划资助项目(2007AA12Z166)
关键词 遥感图像处理 标准模型特征 视皮层前馈模型 纹理目标识别 层次化处理 remote sensing processing; standard model feature(SMF); cortex feed-forward model; texture-based object recognition; hierarchical processing
  • 相关文献

参考文献11

  • 1Tuceryan M, Jain A K. Texture analysis., handbook pattern recognition and computer vision[M]. Singa pore.. World Scientific, 1993.
  • 2Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex [J].Nature Neuroscience, 1999, 2(11): 1 019-1 025.
  • 3Serre T, Wolf L, Poggio T. Object recognition with features inspired by visual eortex[C]//Proc IEEE Conf Computer Vision and Pattern Recognition. San Diego: IEEE Computer Society, 2005:994-1 000.
  • 4Serre T, Wolf L, Bileschi S, et al. Robust object recognition with cortex-like mechanisms [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(3): 411-426.
  • 5Serre T, Kouh M, Cadieu C, et al. A theory of object recognition: computations and circuits in the feedforward path of the ventral stream in primate visual cortex, AI Memo 2005 036/CBCL Memo 259 [R]. Cambridge: Massachusetts Institute of Technology, 2005.
  • 6毕胜,梁德群.基于人类视觉特性的纹理分割方法[J].计算机应用,2006,26(5):1015-1017. 被引量:6
  • 7吴高洪,章毓晋,林行刚.利用小波变换和特征加权进行纹理分割[J].中国图象图形学报(A辑),2001,6(4):333-337. 被引量:55
  • 8Salari E, Ling Z. Texture segmentation using hierarchical wavelet decomposition [J]. Pattern Recogni tion, 1995, 28(12): 1 819-1 824.
  • 9Lin C T, Huang C H, Chen S A. CNN-based hybrid order texture segregation as early vision processing and its implementation on CNN-UM[J]. IEEE Trans on Circuits and Systems, 2007, 54(10):2 277-2 287.
  • 10多布切斯.小波十讲[M].李建平,杨万年,译.北京:国防工业出版社,2004.

二级参考文献11

  • 1TAN TN, CONSTANTINIDES AG. Texture analysis based on a human visual model[A].Proc, IEEE Int. Conf. Acoustics, Speech,Sit,real Processing[C].Albuquerque, NM, 1990,4:2137-2140.
  • 2CHEN CH. Handbook of Pattern Recognition and Computer Vision[M].2nd ed. New Jersey: World Scientific Publishing Co.. 1998,207 - 248.
  • 3RAO AR, LOHSE GL. Towards a texture naming system: Identifying relevant dimensions of texture[A]. Prec. IEEE Visualization'93[C], 1993. 220 -227.
  • 4LIU F, PICARD RW. Periodicity, directionality, and randomness:Wold features for perceptual pattern recognition[A]. Proc. Int.Conf. Pat. Ree[C]. Jerusalem, Israel, 1994,2: 184-185.
  • 5LONG P, ZHAO R. A new texture segmentation method based on visual perception and phase feature[A]. Proceedings of the 19963 rd International Conference on Signal Processing[C], 1996, 2:1015 -1018.
  • 6BRODATZ P. Textures: A photographic album for artists and designers[M]. NY: Dover, 1966.
  • 7Salari E,Ling Z.Texture segmentation using hierarchical wavelet decomposition[].Pattern Recognition.1995
  • 8Daubechies I.Orthogonal bases of compactly supported wavelets[].Communications in Pure Applied Mathematics.1988
  • 9Brodatz P.Textures: A photographic album for artists and designer[]..1966
  • 10Laws K I.Rapid texture identification[].Proceedings of SPIE the International Society for Optical Engineering.1980

共引文献59

同被引文献36

  • 1Adelson E H, Bergen J R. Spatiotemporal energy models for the perception of motion[J]. Journal of the Optical Society of America, 1985, 2(2): 284- 299.
  • 2Carandini M, Heeger D J. Summation and division by neurons in primate visual cortex[J]. Science, 1994, 264(5163) : 1333-1336.
  • 3Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex[J]. Nature Neuro- science, 1999, 2(11): 1019-1025.
  • 4Serre T, Wolf L, Poggio T. Object J'ecognition with features inspired by visual cortex[C]//Proc IEEE Conf on Computer Vision and Pattern Recognition .San Diego: IEEE Computer Society, 2005: 994- 1000.
  • 5Serre T, Wolf L, Bileschi S, et al. Robust object rec- ognition with cortex-like mechanisms[J]. IEEE Trans Pattern Analysis Machine Intelligence, 2007, 29(3) : 411-426.
  • 6Schwartz O, Pillow J W, Rust N C, et al. Spike-trig- gered neural characterization[J]. Journal of Vision, 2006, 6(4): 484-507.
  • 7Kouh M, Poggio T. A canonical neural circuit for cortical nonlinear operations [J]. Neural Computa- tion, 2008, 20(6): 1427-1451.
  • 8Bergstra J, Bengio Y, Louradour J. Suitability of V1 energy models for object classification[J]. Neu- ral Computation, 2011, 23(3): 774-790.
  • 9Heeger D J. Normalization of cell responses in cat striate cortex [J]. Visual Neuroseience, 1992, 9 (2) : 181-198.
  • 10Lecun Y. The mnist database of handwritten digits [DB/OL]. [2012-09-20]. http://yann, lecun, com/ exdb/mnist/.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部