期刊文献+

机器人二维环境下仿人虚拟力场避障研究 被引量:3

Avoiding obstacles using virtual force field with humanoid strategy for autonomous robot in 2-D environment
下载PDF
导出
摘要 动态环境下避障是机器人实现自主运动的关键。首先建立了适合虚拟力场算法的机器人工作环境数学描述。将人避障行走策略引入虚拟力场中,具体包括:设计了单元格障碍物可信度的邻域平滑累积值计算方法,模拟人对移动障碍物的躲避策略;建立可信度的不确定推理计算方法,处理信号和环境存在干扰问题;设计了基于目标点方位角的吸引力计算公式来解决目标点超出感知空间问题;设计了变权重加权排斥力计算方法,使机器人对前进方向的障碍更敏感;借鉴人绕开障碍物策略,采用临时旋转目标点方向得到的虚拟目标点来使机器人沿障碍物运动直到绕开。针对房间和街面环境,在MobotSim平台上进行仿真实验,给出了实验结果和分析。在合理设置参数下,机器人能避开障碍物到达目标点,且避障路径优于传统的虚拟力场方法。结果验证了该方法的有效性。 Obstacles avoiding is the difficult problem of autonomous robot in dynamic environment.Firstly, the model of environment including robot,obstacles and target are established and given.Then humanoid strategies of walking are analyzed and formulated into Virtual Force Field(VFF) algorithm.In order to deal with moving obstacles,the adjacent smoothing method is used in accumulation computing of Confirmation Factors(CF) which mean the degree of grid being obstacle.The radius of adjacent area is designed to be relevant to the obstacle moving speed.Uncertain reasoning is adopted for computing com- plex CF with uncertain of environment and sensors signal, and synthesize method is designed for multi-sensors detecting ob- stacles.When target is out robot sensor workspace,the attraction force computing formula using direction parameters is given. The weight varying with angle from robot moving direction to obstacles is designed, and used to make robot more sensitivi- ty to obstacles on moving way like human.In order to walk out local minima point,the virtual target is used,which is ob- tained by temporal changing target direction.Indoor and outdoor virtual environment are established on MobotSim,and the algorithm proposed is programmed using Basic.The simulation tests are finished and analyzed.The given results demonstrate the feasibility and effectiveness of proposed method.The route of robot is better by VFF with humanoid strategy than common VFF.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第34期215-218,231,共5页 Computer Engineering and Applications
基金 浙江省教育厅基金(No.20070673)~~
关键词 虚拟力场 避障 仿人 自主机器人 仿真 Virtual Force Filed (VFF) avoiding obstacles humanoid autonomous robot simulation
  • 相关文献

参考文献8

  • 1Ge S S, Cui Y J.New potential functions for mobile robot path planning[J].IEEE Transactions on Robotics and Automation, 2000,16(5) :615-620.
  • 2吕冬梅,颜秉勇,刘喜梅.基于consensus的人工势能场在足球机器人避障中的应用[J].高技术通讯,2007,17(7):714-718. 被引量:2
  • 3Liu D K,Wang D,Dissanayake G.A force field method based multi-robot collaboration[C]//2006 IEEE Conference on Robotics,Automation and Mechatronics,2006: 1-6.
  • 4Rimon E.Exact robot navigation using artificial potential functions[J].IEEE Transaction on Robotics and Automation, 1992, 8(5):501-518.
  • 5曲道奎,杜振军,徐殿国,徐方.移动机器人路径规划方法研究[J].机器人,2008,30(2):97-101. 被引量:98
  • 6Ferguson D, Stentz A.Usdng interpolation to improve path planning:The field D* algorithm[J].Journal of Field Robotics,2006, 23(2):79-101.
  • 7李磊,陈细军,曹志强,候增广,谭民.一种室内轮式自主移动机器人的导航控制研究[J].自动化学报,2003,29(6):893-899. 被引量:10
  • 8Im K Y, Oh S Y.An extended virtual force field based behavioral fusionwith neural networks and evolutionary programming for mobile robot navigation[J].Proceedings of the 2000 Congress on Evolutionary Computation,2000: 1238-1244.

二级参考文献26

  • 1樊晓平,李双艳,陈特放.基于新人工势场函数的机器人动态避障规划[J].控制理论与应用,2005,22(5):703-707. 被引量:40
  • 2刘华军,杨静宇,陆建峰,唐振民,赵春霞,成伟明.移动机器人运动规划研究综述[J].中国工程科学,2006,8(1):85-94. 被引量:74
  • 3Ge S S,Cui Y J.New potential functions for robot path planning.IEEE Transactions on Robotics and Automation,2000,16(5):55-59.
  • 4Khatib O.Real-time obstacle avoidance for manipulators and mobile robots.The International Journal of Robotics Research,1986,5(1):90-98.
  • 5Olfati-Saber R,Murray R M.Consensus problems in networks of agents with switching topology and time-delays.IEEE Trans on Automatic Control,2004,49(9):1520-1533.
  • 6Moreau L.Stability of multi-agent systems with time-dependent communication links.IEEE Transactions on Automatic Control,2005,50:169-182.
  • 7山口亨 佐藤应理.机器人技术综论[J].知能と情报,2003,15(4):366-371.
  • 8Dong E C,Shawn C S,Jerrold E M,et al.Collision avoidance for multiple agent systems.In:Proceedings of the 42nd IEEE Conference on Decision and Control Maui,Hawaii USA,2003.539-543.
  • 9Olfati-Saber R.Distributed Kalman Filtering and Sensor Fusion in Sensor Networks.Workshop on Network Embedded Sensing and Control,Notre Dame University,South Bend,IN,2005.
  • 10Nilsson N J. Principles of Artificial Intelligence [ M ]. Berlin, Germany: Springer, 1980.

共引文献107

同被引文献22

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部