期刊文献+

基于PSO_LS-SVM的装备研制费用预测研究 被引量:3

Research on the Application of the PSO_LS-SVM for the Weapon Equipment’s Development-Cost Prediction
下载PDF
导出
摘要 在简要介绍了粒子群优化算法基本原理的基础上,建立了基于POS_LS—SVM的装备研制费用预测模型,并应用实例进行了验证。结果表明,采用PSO_LS—SVM方法进行装备研制费用预测,得到的预测结果精度更高、计算速度更快。 On the basis of the simple introduction of the Particle Swarm Optimization arithmetic basic principle, the POS_LS-SVM prediction model of the weapon equipment's development-cost was built, and then the example was appliced to verify the prediction model. As a result, using the POS LS-SVM to predict the weapon equipment's developmentcost, the accuracy of prediction is higher, and the computation speed is quicker.
出处 《海军航空工程学院学报》 2010年第6期690-694,共5页 Journal of Naval Aeronautical and Astronautical University
关键词 装备 研制费用 粒子群 最小二乘支持向量机 预测 equipment developmentcost Particle Swarm LS-SVM prediction
分类号 E911 [军事]
  • 相关文献

参考文献7

  • 1CHAPELLE O, VAPNIK V. Choosing multiple parameters for support vector machines[R]. NewYork: AT&T Research Labs, 2001.
  • 2吴宏晓,侯志俭.基于免疫支持向量机方法的电力系统短期负荷预测[J].电网技术,2004,28(23):47-51. 被引量:24
  • 3刘志伟.舰船装备建造费预测研究[D].北京:装备指挥技术学院,2008:55-60.
  • 4EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C]//Proe, of the Sixth International Symposium on Micro Machine and Human Science. Nagoya, Japan, 1995:39-43.
  • 5SHI Y, EBERHART R. A modified particle swarm optimizer[C]//IEEE World Congress on Computation Intelligence. 1998:69-73.
  • 6BERGH F, ENGELBRECHT A. A new locally convergent particle swarm optimizer[C]//Proc, of IEEE Int. Conf. on Systems, Man and Cybernetics. Tunisia: IEEE. 2002:96-107.
  • 7谢宏,程浩忠,张国立,牛东晓,杨镜非.基于粗糙集理论建立短期电力负荷神经网络预测模型[J].中国电机工程学报,2003,23(11):1-4. 被引量:66

二级参考文献9

  • 1Tamimi M, Egbert R. Short term electric load forecasting via fuzzy neural collaboration [J].Electric Power Systems Research, 2000, (56)243-248.
  • 2Mastorocostas P A, Theocharis J B, Bakirtizis A G, Fuzzy modeling for short term load forecasting using the orthogonal least squares method [J].IEEE Transaction on Power Systems, 1999, 14(1): 29-36.
  • 3Masters T. Neural, novel & hybrid algorithms for time series prediction[M]. John Wiley & Sons. Inc., 1995.
  • 4Ho K H, Hsu Y Y, Chen C F. Short-term load forecasting of Taiwan power system using a knowledge-based expert system[J]. IEEE Transactions on Power Systems, 1990, 5(4): 1214-1221.
  • 5Hippert H S, Pefreira C E, Souza R C. Neurat network for short-term load forecasting: A review and evaluation[J]. IEEE Trans on Power Systems. 2001. 16(2): 44-54
  • 6Chapelle O, Vapnik V. Choosing multiple parameters for support vector machines[R]. New York: AT & T Research Labs, 2001.
  • 7Shevade S K, Keerthi S S, Bhattacharyy C et al. Improvements to SMO algorithm for SVM regression[J]. IEEE Trans on Neural Network, 2000, 11(5): 1188-1193.
  • 8汪峰,于尔铿,阎承山,李晓彬,刘军,刘永奇.基于因素影响的电力系统短期负荷预报方法的研究[J].中国电机工程学报,1999,19(8):54-58. 被引量:50
  • 9谢宏,陈志业,牛东晓,赵磊.基于小波分解与气象因素影响的电力系统日负荷预测模型研究[J].中国电机工程学报,2001,21(5):5-10. 被引量:90

共引文献87

同被引文献42

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部