期刊文献+

转速对高压扭转Cu试样的组织与性能的影响 被引量:4

Effect of revolution speed on microstructure and microhardness of Cu spencimens subjected to high-pressure torsion
原文传递
导出
摘要 通过高压扭转(HPT)技术在不同转速条件下实现了Cu试样的晶粒细化。利用光学显微镜(OM)、透射电镜(TEM)及显微硬度计观察并测试了组织的结构与性能,并基于有限元计算了变形诱导试样的温升,研究了转速对Cu试样的组织细化与性能的影响。结果表明:转速由1/3r.min-1增大至1r.min-1,经1圈扭转变形,试样温度由40.8℃升高到54.1℃,变形组织均为100~600nm的高位错密度位错胞/亚晶组织,显微硬度由初始态的52HV0.05增大至140HV0.05;经16圈扭转变形,试样温度由50.4℃升高到97.4℃,组织细化到200nm。慢速扭转变形试样晶内位错密度高,微观组织处于严重变形状态;而快速扭转试样晶内衬度均匀,位错较少,微观组织经历明显的动态回复,显微硬度较慢速扭转变形试样低6%。 Cu specimens were deformed by high-pressure torsion(HPT)at different revolution speeds,to investigate the effect of revolution speed on its microstructure and mechanical properties by means of OM,TEM and microhardness testing.It was found that heavily deformed microstructure with average grain size in 200 nm formed in the sample after HPT deforming to large strains at a revolution speed of 1 /3 r.min-1.Increasing revolution speed up to 1 r.min-1,some dislocation-free fine grains appears,leading to a 6 percent of decrease in average hardness as compared to the lower revolution speed counterparts.One turn of HPT deformation induces dislocation-cells /subgrains with size in 100—600 nm formed and an increase in hardness from 52 to 140 HV0.05.The evolution of the microstructure and mechanical properties with revolution speed was interpreted by using a thermal analysis simulation based on heat generation induced by the extensive HPT deformation.
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2010年第11期109-115,共7页 Transactions of Materials and Heat Treatment
基金 国家自然科学基金项目(10721202 10772178 50571110)
关键词 CU 高压扭转 微观结构 显微硬度 扭转速度 copper high pressure torsion(HPT) microstructure microhardness revolution speed
  • 相关文献

参考文献19

  • 1Valiev R Z, lslamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation[ J]. Progress in Materials Science, 2000, 45(2) :103 -189.
  • 2WANG J T, KANG S B, KIM H W, et al. Lamellae deformation and structural evolution in an A1-33% Cu eutectic alloy during equal-channel angular pressing [ J ]. Journal of Materials Science, 2002, 37 (12) :5223 - 5227.
  • 3HUANG C X, WANG K, WU S D, et al. Deformation twinning in polycrystalline copper at room temperature and low strain rate[J]. Acta Materialia, 2006, 54 ( 3 ) :655 - 665.
  • 4WU X L, TAO N R, WEI Q M, et al. Microstructural evolution and formation of nanocrystalline inteimetallic compound during surface mechanical attrition treatment of cobalt[ J]. Acta Materialia, 2007, 55(17) :5768 - 5779.
  • 5Hughes D A, Hansen N. High angle boundaries formed by grain subdivision mechanisms[ J]. Acta Materialia, 1997, 45 (9) : 3871 -3886.
  • 6ZHAO Y H, LIAO X Z, ZHU Y T, et al. Influence of stacking fault energy on nanostructure formation under high pressure torsion[ J]. Materials Science and Engineering A, 2005, 410 -411 (25) :188 -193.
  • 7Zhilyaev A P, Lee S, Nurislamova G V, et al. Microhardness and microstructural evolution in pure nickel during high-pressure torsion[ J]. Scripta Materialia, 2001, 44(12) :2753-2758.
  • 8Zehetbauer M J, Stuwe H P, Vorhauer A, et al. The role of hydrostatic pressure in severe plastic deformation [ J ]. Advanced Engineering Materials, 2003, 5(5) :330 -337.
  • 9Hebesberger T, Stuwe H P, Vorhauer A, et al. Structure of Cu deformed by high pressure torsion[J~. Acta Materialia, 2005, 53(2) :393-402.
  • 10Horita Z J, Langdon T G. Microstructures and microhardness of an aluminum alloy and pure copper after processing by high-pressure torsion [ J ]. Materials Science Engineering A, 2005, 410 - 411 ( 25 ) :422 - 425.

二级参考文献17

  • 1Valiev R, Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 45:103
  • 2Wang J T, Kang S B, Kim H W, Horita Z. J Mater Sci, 2002; 37:5223
  • 3Huang C X, Wang K, Wu S D, Zhang Z F, Li G Y, Li S X. Acta Mater, 2006; 54:655
  • 4Wang K, Tao N R, Liu G, Lu J, Lu K. Acta Mater, 2006; 54:5281
  • 5Wu X, Tao N, Hong Y, Xu B, Lu J, Lu K. Acta Mater, 2002; 50:2075
  • 6Wu X L, Tao N R, Wei Q M, Jiang P, Lu J, Lu K. Acta Mater, 2007; 55:5768
  • 7Zhilyaev A P, Oh ishi K, Langdon T G, McNelley T R. Mater Sci Eng, 2005; A410 411:277
  • 8Yang Z Q, Welzel U. Mater Lett, 2005; 59:3406
  • 9Horita Z J, Langdon T G. Mater Sci Eng, 2005; A410-411: 422
  • 10Zhilyaev A P, Nurislamova G V, Kim B K, Baro M D,Szpunar J A, Langdon T G. Acta Mater, 2003; 51:753

共引文献320

同被引文献37

  • 1王文珂,宋月鹏,高东升,JungHwan Lee,EunYoo Yoon,DongJun Lee,ChongSoo Lee,HyoungSeop Kim.纯铜高压扭转压缩阶段塑性变形的实验及有限元分析(英文)[J].稀有金属材料与工程,2013,42(S2):301-304. 被引量:4
  • 2卢柯,刘学东,胡壮麒.纳米晶体材料的Hall—Petch关系[J].材料研究学报,1994,8(5):385-391. 被引量:85
  • 3林高用,周佳,张振峰,郑小燕.基于DEFORM 2D的纯铜管热挤压过程的数值模拟[J].热加工工艺,2006,35(17):51-53. 被引量:22
  • 4上官丰收,谢季佳,洪友士.高压扭转致纯铜晶粒细化及与应变的关系[J].材料研究学报,2007,21(1):72-76. 被引量:16
  • 5Liu Manping, Roven Hans J, Yu Maxim, et al. Structure and mechanical properties of nanostructured Al-Mg alloys processed by severe plastic deformation[J]. J Mater Sci, 2013,48(13) .4681.
  • 6Sabirov I, Murashkin M Yu, Valiev R Z. Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development[J]. Materi Sci Eng A, 2013, 560 : 1.
  • 7Ni S, Wang Y B, Liao X Z, et al. The effect of dislocation density on the interactions between dislocations and twin boundaries in nanocrystalline materials [J]. Aeta Mater, 2012,60(6) : 3181.
  • 8Behtash Mani, Jahedi Mohammad, Paydar Mohammad Hos- sein. A modification on ECAP process by incorporating tor- sional deformation[J]. Mater Sci Eng A, 2011, 528 (12) 4159.
  • 9Behtash Mani, Jahedi Mohammad, Paydar Mohammad Hos- sein. Consolidation of commercial pure aluminum powder by torsional-equal channel angular pressing (T-ECAP) at room temperature[J]. Powder Techn,2012,219 : 1.
  • 10Ni S, Wang Y B, Liao X Z, et al. Strain softening in nano- crystalline Ni-Fe alloy induced by large HPT revolutions [J]. Mater Sci Eng A, 2011,528 (13) : 4807.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部