摘要
本文从非定常的Euler方程出发,进行了可压缩涡环和平面激波相互作用的数值研究。首先,用数值方法建立了一种无粘可压缩涡环模型;然后,利用Rankine-Hugoniot关系,在流场中嵌入运动激波,求解了同向和反向激波-涡环相干的流动过程,成功模拟了波涡相互作用过程中激波的复杂变化以及涡环的形态变化,研究了不同参数下激波-涡环相互作用的流场结构的不同形式。
A numerical study on the interaction between a planer shock wave and a vortex ring is performed by solving the unsteady Euler equations time accurately.The initial data is obtained by assuming a Gaussian vorticity distribution in the cross section of the vortex ring,and an instantaneous solenoidal velocity field with a homogeneous entropy is employed at this moment for simlicity.The time advancing is performed by using second order Range Kutta scheme and the NND scheme.Two categories of the shock vortex interaction,that is,reverse and catching up,are examined at different parameters.
出处
《空气动力学学报》
CSCD
北大核心
1999年第2期203-211,共9页
Acta Aerodynamica Sinica
基金
国家自然科学基金
国家教委基金
关键词
激波
涡环
可压缩涡
数值模拟
相互作用
shock wave
vortex ring
shock vortex interaction
numerical simulation