期刊文献+

基于粗糙集核优化的支持向量机在多组分污染气体定量分析中的研究与应用 被引量:6

Research on Concentration of Multi-Component Pollution Gas Based on SVM with Kernel Optimized by Rough Set
下载PDF
导出
摘要 研究基于粗糙集核优化的支持向量机(RS-SVM)在红外光谱定量中的应用。通过粗糙集分类的方法对多组分污染气体红外光谱对应的特征波长段进行核函数初始数据的优化,再将优化后的核函数带入支持向量机,从而将二维混合光谱信息投影到高维空间,再进行单种气体浓度的反演运算。通过采用LS-SVM和PCA-SVM两种典型的光谱数据处理算法作对比,对五种混合气体各组分定量分析进行比较。当光谱可分度高时,三种方法的预测值都接近标准值,平均误差接近于0.13;而当光谱可分度低时,RS-SVM的预测值比前两种更精确,且当待测种类越多时,该方法精度和运算时间的优势越显著。 This paper introduced the application of support vector machines(SVM) regression method based on kernel function optimized by the rough set in the infrared spectrum quantitative calculation.According to kernel function with the rough set classification's method,the spectrum data(characteristic wavelength section) is optimized.The kernel function leads support vector machines,and the SVM project the two-dimensional room to the multi-dimensional room,and calculate the concentration of every kind of gas in multi-component pollution gas.By using two kinds of typical spectrum data processing algorithm to make the contrast,the comparison of five kinds of gaseous mixture various proximate analysis is carried out,and when the spectrum separable rate is high,the predicted values of the three methods approach the normal value,and the average error is smaller than 0.13;but when the spectrum separable rate is low, the RS-SVM predicted value is more precise than the first two kinds.Experimental data show that the consequence is better when there are more testing types,and the precision and operation of this method is of more remarkable superiority.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2010年第12期3384-3387,共4页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(60572019) 重点实验室基金项目(9140C1204070709) 山西省科技攻关项目(20090321044) 山西省研究生优秀创新项目(20081017)资助
关键词 光谱学 粗糙集 支持向量机 多组分污染气体 定量分析 Spectroscopy Rough Set Support Vector Machine Multi-component pollution gas Quantitative analysis
  • 相关文献

参考文献7

二级参考文献55

共引文献115

同被引文献75

引证文献6

二级引证文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部