期刊文献+

基于MEBN的战术意图识别 被引量:12

Tactical intention recognition based on multi-entity Bayesian network
下载PDF
导出
摘要 战术意图识别是不确定性战场环境中理解战场态势、预测敌军将来行动过程的关键。意图识别模型的构建是作战仿真系统中实体行为建模的难点之一,如何表示不确定的意图元素及其不确定性关系并进行有效推理是意图识别的核心问题。分析了影响敌人战术意图的因素及各因素之间不确定性表示途径,提出了采用多实体贝叶斯网(multi-entity Bayesian network,MEBN)来描述敌人的战术意图,采用一阶谓词来表示意图影响因素,大大扩展了贝叶斯网表示不确定性问题的能力。MEBN采用实体片断集描述敌人的作战知识,方便重用。基于描述的敌人意图知识库,给出了基于知识的模型构建算法来动态构建战术意图识别模型。最后,通过仿真实验,对基于MEBN的战术意图识别方法进行了实验验证,结果表明该方法是有效可行的。 In uncertain battlefield situations,tactical intention recognition is a critical element for understanding the tactical situation and predicting the coming course of action of the enemies.How to integrate intention recognition into a behavior model of simulated combat entities is a challenging problem and how to represent the uncertain elements relating to enemy's intention and their uncertain relations is essential issues in intention inference.Through analyzing the factors that impact tactical intentions of the enemy and the methods that denote uncertain relations among these factors,the multi-entity Bayesian network(MEBN) is presented to denote tactical intention of the enemy.MEBN expresses the influence factors by first order logic and enhances the ability of describing the uncertain problem.MEBN adopts entity fragments for describing the military domain knowledge and so it is easy reused.A knowledge-based constructing model algorithm is proposed for dynamic constructing a tactical intention model based on the knowledge base of enemy intention.Finally,a simple example of tactical intention recognition is given.The results show that the method is available and efficient.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2010年第11期2374-2379,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(60904055) 国家部委基金(940A04010110KG0110)资助课题
关键词 战术意图识别 动态战术意图模型 多实体贝叶斯网 基于知识的模型构建 概率推理 tactical intention recognition dynamic tactical intention model multi-entity Bayesian network(MEBN) knowledge-based model constructing probabilistic inference
  • 相关文献

参考文献10

  • 1McDaniel D.An information fusion framework for data integration[C] //Proc.of the 13th Software Technology Conference,2001.
  • 2Mulder F,Voorbraak F.A formal description of tactical plan recognition[J].Information Fusion,2003,4(1):47-61.
  • 3曾鹏,吴玲达,陈文伟.多Agent战术意图识别的知识组织与问题求解[J].计算机科学,2007,34(7):181-183. 被引量:8
  • 4Holmes D E.Innovations in Bayesian networks[M].Springer:2008.
  • 5Suzic R.Representation and recognition of uncertain enemy policies using statistical models[C] //Proc.of the NATO RTO Symposium on Military Data and Information Fusion,2003.
  • 6Suzic R.A generic model of tactical plan recognition for threat assessment[J].Multisensor,Multisource Information Fusion:Architectures,Algorithms,and Applications,2005,5813:105-116.
  • 7Johansson F,Falkman G.Implementation and integration of a Bayesian network for prediction of tactical intention into a ground target simulator[C] //Proc.of International Conference of Information Fusion,2008.
  • 8Laaky K B.MEBN:a logic for open-world probabilistic reasoning[R].GMU C4I Center Technical Report,2005.
  • 9Costa P C,Fung F,Laskey K B.MEBN logic:a key enabler for network centric warfare[C] //Proc.of 10th International Command and Control Research and Technology Symposium,The Future of C2.2008.
  • 10Mahoney S M,Laakey K B.Constructing situation specific networks[C] //Proc,of the 14th Conference on Uncertainty in Artificial Intelligence,1998.

二级参考文献6

  • 1Sridharan S C F. The plan recognition problem: An intersection of psychology and artifical intelligence [J]. AI-1978,11 :45-83
  • 2Kautz H. A formal theory of plan recognition and its implementation[A]. In: Reasoning about Plans [C], Morgan Kaufman, San Mateo, CA, US, 1991.69-125
  • 3Azarewicz J. Plan recognition for airborne tactical decision making [A]. In: Proceedings of the National Conferenceon Artificial Intelligence [C]. Menlo Park, Calif.:AAAI press, 1986. 805-811
  • 4Saria S. Probabilistic Plan Recognition in Multi-agent Systems [A]. ICAPS [C],2004. 89-87
  • 5Wobcke W. Two logical theories of plan recognition[J].Journal of Logic Computation, 2002. 371-412
  • 6Bui H,Venkatesh S, West O. Policy Recognition in the Abstract Hidden Markov Model[J].Journal of Artificial Intelligence 2002,17:451-499

共引文献7

同被引文献112

引证文献12

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部