期刊文献+

整体式Cu-ZSM-5催化剂上NH_3选择性催化还原NO活性 被引量:18

Activity of Monolith Cu-ZSM-5 Catalyst for Selective Catalytic Reduction of NO with NH_3
下载PDF
导出
摘要 采用浸渍法制备了一系列不同Cu含量的Cu-ZSM-5催化剂,并用于NH3选择性催化还原(SCR)NO反应.结果表明,当Cu含量为8%时,Cu-ZSM-5催化剂的活性最高;当空速为30000h-1,在198~440oC反应时NO转化率均高于80%,最高可达97%,且空速的影响较小.经快速水热老化后,该催化剂活性明显优于商用V基催化剂.H2O和SO2对Cu-ZSM-5催化剂的SCR活性有所影响,但可明显恢复.X射线衍射和NH3程序升温脱附结果表明,当Cu-ZSM-5中Cu含量为8%时,进入ZSM-5中阳离子位的Cu较多,催化剂的活性较高,且其表面具有较多的酸中心和酸量,从而有利于SCR反应. A series of Cu-ZSM-5 catalyst samples with different Cu contents were prepared by an incipient wetness impregnation method and were used for selective catalytic reduction(SCR) of NO with NH3.The results showed that the Cu-ZSM-5 with 8% Cu loading had the highest catalytic activity.The conversion of NO was above 80% at 198–440℃,and the highest conversion was 97% at a space velocity of 30000 h–1.The space velocity had less influence on the catalytic activity,and the catalytic activity temperature window was still wide at a space velocity of 60000 h–1.After hydrothermal aging,the catalytic activity of the Cu-ZSM-5 was significantly higher than that of the commercial V-based catalyst.The addition of H2O and SO2 lead to the reduced activity;however,the catalytic activity was still good.X-ray diffraction and NH3 temperature-programmed desorption results indicated that more Cu immigrated into the cation sites of ZSM-5 and the active sites of the catalyst increased when the Cu content reached 8%.Moreover,the Cu-ZSM-5 had more surface acidity centers and surface acidity,which were beneficial to SCR reaction.
出处 《催化学报》 SCIE EI CAS CSCD 北大核心 2010年第11期1411-1416,共6页
基金 国家自然科学基金(20333030 20273043)
关键词 ZSM-5分子筛 整体式催化剂 氮氧化物 选择性催化还原 copper ZSM-5 zeolite monolith catalyst nitrogen oxide ammonia selective catalytic reduction
  • 相关文献

参考文献32

  • 1Broer S, Hammer T. Appl Catal B, 2000, 28:101.
  • 2Garcia-Bordeje E, Calvillo L, Lazaro M J, Moliner R. Appl Catal B, 2004, 50:235.
  • 3Kaspar J, Fornasiero P, Hickey N. Catal Today, 2003, 77: 419.
  • 4Adams K M, Cavataio J V, Hammerle R H. Appl Catal B, 1996, 10:157.
  • 5Carja G, Kameshima Y, Okada K, Madhusoodana C D. Appl Catal B, 2007, 73:60.
  • 6van Kooten W E J, Liang B, Krijnsen H C, Oudshoorn O L, Calis H P A, van den Bleek C M. Appl Catal B, 1999, 21: 203.
  • 7Sjovall H, Olsson L, Fridell E, Blint R J. Appl Catal B, 2006, 64:180.
  • 8Krishna K, Makkee M. Catal Today, 2006, 114:23.
  • 9Rivallan M, Berlier G, Ricchiardi G, Zecchina A, Nechita M T, Olsbye U. Appl Catal B, 2008, 84:204.
  • 10Qi G S, Wang Y H, Yang R T. Catal Lett, 2008, 121:111.

二级参考文献15

  • 1张治安,杨邦朝,邓梅根,胡永达,汪斌华.超级电容器纳米氧化锰电极材料的合成与表征[J].化学学报,2004,62(17):1617-1620. 被引量:39
  • 2Khodayarl R, Odenbrand C U I. Appl Catal B, 2001, 30(1-2): 87
  • 3Kijlstra W S, Brands D S, Smlt H I, Pods E K, Bliek A.J Catal, 1997, 171(1): 219
  • 4Park T S, Jeong S K, Hong S H, Hong S C. Ind Eng Chem, Res, 2001, 40(21): 4491
  • 5Qi G S, Yang R T. Appl Catal B, 2003, 44(3): 217
  • 6Richter M, Trunschke A, Bentrup U, Brzezinka K W,Schreier E, Schneider M, Pohl M M, Fricke R. J Catal,2002, 206(1): 98
  • 7Marban G, Fuertes A B. Appl Catal B, 2001, 34(1): 43
  • 8Yoshikawa M, Yasutake A, Mochida I. Appl Catal A,1998, 173(2): 239
  • 9Teng H, Hsu I. Y, Lai Y C. Environ Sci Technol, 2001,35(11): 2369
  • 10Zhu Zh P, i.iu Zh Y, Liu Sh J, Niu H X, Hu T D, Liu T,Xie Y N. Appl Catal B, 2000, 26(1): 25

共引文献51

同被引文献144

引证文献18

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部