期刊文献+

一类非线性色散Boussinesq方程的隐式孤立波解 被引量:1

Implicit solitary wave solutions for a class of nonlinear dispersive Boussinesq equation
原文传递
导出
摘要 用动力系统分岔方法研究了一类非线性色散Boussinesq方程.在不同的参数条件下,给出了该方程具有隐函数形式的孤立波解的解析表达式.数值模拟进一步验证了所得结果的正确性. By applying the bifurcation method of dynamical systems to a class of nonlinear dispersive Boussinesq equations,the analytic expressions of implicit solitary wave solutions are obtained under different parameter conditions.Numerical simulations are given to show the correctness of our results.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2010年第12期8343-8347,共5页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10872080)资助的课题~~
关键词 非线性色散Boussinesq方程 分岔方法 同宿轨道 隐式孤立波解 nonlinear dispersive Boussinesq equation bifurcation method homoclinic orbit implicit solitary wave solutions
  • 相关文献

参考文献5

二级参考文献47

共引文献405

同被引文献12

  • 1E1 G A, Grimshaw R H, Pavlov M V. Integrable shallow-water equations and undular bores[J]. Stud. Appl. Math., 2001, 106: 157-186.
  • 2Li X M, Chen A H. Darboux transformation and multi-soliton solutions of Boussinesq-Burgers equation[J]. Phys. Lett. A, 2005, 342: 413-420.
  • 3Kaup D J. A higher-order water wave equati0n-and its method of solution[J]. Progr. Theoret. Phys., 1975, 54: 396-408.
  • 4Wang P, Tian B, Liu W J et al. Lax pair, B~icklund transformation and multi-soliton solutions for the Boussinesq-Burgers equations from shallow water waves[J]. Appl Math Comput, 2010, 218: 1726-1734.
  • 5Rady A S, Osman E S, Khalfallah M. Multi-soliton solution, rational solution of the Boussinesq- Burgers equations[J]. Commun. Nonlinear Sci Numer Simulat, 2010, 15: 1172-1176.
  • 6Khalfallah M. Exact traveling wave solutions of the Boussinesq-Burgers equation[J]. Math Comput Model, 2009, 49: 666-671.
  • 7Gao L, Xu w, Tang Y N et al. New families of travelling wave solutions for Boussinesq-Burgers equation and (3+1)-dimensional Kadomtsev-Petviashvili equation[J]. Phys Lett A, 2007, 366: 411- 421.
  • 8Rady A S, Khalfallah M. On soliton solutions for Boussinesq-Burgers equations[J]. Commun. Non- linear Sci Numer Simulat, 2010, 15: 886-894.
  • 9Luo D et al. Bifurcation Theory and Methods of Dynamical Systems[M]. London: World Scientific Publishing Co., 1997.
  • 10Bi Q S. Singular solitary waves associated with homoclinic orbits[J]. Physics Letters A, 2006, 352: 227-232.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部