期刊文献+

温度对光学微腔光子激子系统玻色凝聚的影响 被引量:2

Influence of temperature on the Bose condensation of photons and excitons in optic microcavity
原文传递
导出
摘要 建立了光学微腔中光子激子系统的物理模型,确定了光学微腔宽度为常数和可变这两种情况下玻色凝聚时化学势的变化范围和粒子数密度随温度和位置的变化规律.以半导体GaAs光学微腔为例,探讨了温度对玻色凝聚的影响.研究表明:系统出现玻色凝聚时激子化学势的变化范围与材料介电函数、微腔宽度有关,而光子和激子的粒子数密度及总粒子数还与温度有关.玻色凝聚温度理论值与实验值接近.刚出现玻色凝聚时,光子和激子的粒子数密度几乎相等,且局限在r=0的附近;随着温度的降低,光子和激子的粒子数密度都增加,且存在的范围也不断扩大;不论光学微腔宽度是否可变,光子和激子的粒子数密度以及总粒子数都随温度的降低而增大,光子数总是多于激子数. In this paper,an exciton-photon model is created in an optic microcavity,and then in Bose condensation(BC),the variations of chemical potential range and number density of particles with temperature and position are studied in cases:constant width and varying width.Taking a semiconductor optic microcavity GaAs as example,the influence of temperature on BC is analyzed.The result shows that the range of chemical potential is related to dielectric function and microcavity width,while the number densities of photons and excitons and the sum of both particle numbers are related not only to them but also to temperature.The theoretical temperature of BC of GaAs is close to the experimental value.The densities of photons and excitons are almost equal,and their distributions are restricted to r = 0 when BC occurs.With the reduction of temperature the number densities of both particles increase and their distributions expand,and the number of photons is more than that of excitons no matter how the width of optic microcavity changes.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2010年第12期8377-8384,共8页 Acta Physica Sinica
基金 重庆市教育委员会科学技术研究计划(批准号:KJ071206)资助的课题~~
关键词 光学微腔 光子激子系统 玻色凝聚 温度 optic microcavity photonic and excitonic system Bose condensation temperature
  • 相关文献

参考文献17

二级参考文献48

  • 1余学才,莫影.势场中玻色-爱因斯坦凝聚的临界温度[J].物理学报,2004,53(12):4075-4079. 被引量:13
  • 2[1]David E P 1983 Phys. Rev. Lett. 51 1336
  • 3[2]Wolfgang K, Davis K B, Michanel A J et al 1993 Phys. Rev. Lett. 70 2253
  • 4[3]Yu K, Shlyapnikov G V, Walraven J M 1996 Phys. Rev. Lett. 76 2670
  • 5[4]Dos Santos F P J, Léonard J W, Barrelet C J et al 2001 Phys. Rev. Lett. 86 3459
  • 6[7]Yi X X 1999 Acta Phys.Sin. 48 995 (in Chinese) [衣学喜 1999 物理学报 48 995]
  • 7[8]Doyle D M, Sandberg J C, Yu U A et al 1991 Phys. Rev. Lett. 67 603
  • 8[9]Bradley C C, Sackett C A, Tolett J J et al 1995 Phys. Rev. Lett. 75 1687
  • 9[10]Davis K B, Mewes M O, Andrews M R et al 1995 Phys. Rev. Lett. 75 3969
  • 10[11]Ensher J R, Jin D S, Matthews M R et al 1996 Phys. Rev. Lett. 77 498

共引文献28

同被引文献37

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部