期刊文献+

基于静动态混合重构的DG/FV混合格式 被引量:5

A CLASS OF DISCONTINUOUS GALERKIN/FINITE VOLUME HYBRID SCHEMES BASED ON THE"STATIC RE-CONSTRUCTION"AND"DYNAMIC RE-CONSTRUCTION"
下载PDF
导出
摘要 通过比较紧致格式和间断Galerkin(DG)格式,提出了"静态重构"和"动态重构"的概念,对有限体积方法和DG有限元方法进行统一的表述.借鉴有限体积的思想,发展了基于"混合重构"技术的一类新的DG格式,称之为间断Galerkin有限元/有限体积混合格式(DG/FV格式).该类混合格式通过适当地扩展模板(拓展至紧邻单元)重构单元内的高阶多项式分布,在提高精度的同时,减少了传统DG格式的计算量和存储量.通过典型一维和二维标量方程的计算发现新的混合格式在有些情况下具有超收敛(superconvergence)性质. A CLASS OF DISCONTINUOUS GALERKIN/FINITE VOLUME HYBRID SCHEMES BASED ON THE"STATIC RE-CONSTRUCTION"AND"DYNAMIC RE-CONSTRUCTION"Zhang Laiping^(*,+,2)) Liu Wei~+ He Lixin~+ Deng Xiaogang^(*,+) *(State Key Laboratory of Aerodynamics,Mianyang 621000,China) +(China Aerodynamics Research and Development Center,Mianyang 621000,China) By comparing the compact finite difference schemes and discontinuous Galerkin(DG) methods, the concepts of "static re-construction" and "dynamic re-construction" are proposed for high-order numerical schemes.Based on the new concept of "hybrid re-construction",a novel class of DG/finite volume hybrid schemes(DG/FV schemes) is presented.In our DG/FV schemes,the lower-order derivatives are computed locally in a cell by traditional DG schemes(called as "dynamic re-construction"),while the higher-order derivatives are constructed by the "static re-construction" of finite volume schemes,using the known lower-order derivatives in the cell itself and in the neighbor cells.The DG/FV hybrid schemes can reduce the CPU time and storage memory greatly than the traditional DG schemes with the same order of accuracy,and can be extended directly for unstructured and hybrid grids as the DG and/or FV methods.The DG/FV hybrid schemes are applied for 1D and 2 D scalar conservation law.The numerical results demonstrate the accuracy, the efficiency,and the super-convergence property in our third-order DG/FV hybrid schemes.
出处 《力学学报》 EI CSCD 北大核心 2010年第6期1013-1022,共10页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家重点基础研究发展计划(973)资助项目(2009CB723802) 国家自然科学基金资助项目(91016011 11028205)~~
关键词 DG有限元法 有限体积法 静态重构 动态重构 混合格式 discontinuous Galerkin method finite volume method static construction dynamic construction hybrid scheme
  • 相关文献

参考文献24

  • 1Ekaterinaris JA. High-order accurate, low numerical diffusion methods for aerodynamics. Progress in Aerospace Sciences, 2005, 41:192-300.
  • 2Wang ZJ. High-order methods for the Euler and Navier- Stokes equations on unstructured grids. Progress in Aerospace Sciences, 2007, 43:1-41.
  • 3Cockburn B, Karniadakis GE, Shu CW. The development of discontinuous Galerkin methods. In: Cockburn B, Karniadakis GE, Shu CW, eds. Discontinuous Galerkin Methods. Berlin: Springer, 2000.
  • 4Cockburn B, Lin SY, Shu CW. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J Comput Phys, 1989, 84:90-113.
  • 5Cockburn B, Hou S, Shu CW. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math Comput, 1990, 54:545-581.
  • 6Cockburn B, Shu CW. The Runge-Kutta discontinuous Calerkin finite element method for conservation laws V: multidimensional systems. J Comput Phys, 1998, 141: 199- 224.
  • 7Bassi F, Rebay S. High-order accurate discontinuous finite element solution of the 2D Euler equations. J Coraput Phys, 1997, 138:251-285.
  • 8Bassi F, Rebay S. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J Comput Phys, 1997, 131(1): 267-279.
  • 9Bassi F, Rebay S. Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier-Stokes equations. Int J Numer Methods Fluids, 2002, 40(1): 197- 207.
  • 10Atkin HL, Shu CW. Quadrature-free implementation of discontinuous Galerkin method for hyperbolic equations. AIAA J, 1998, 36:775-782.

二级参考文献17

  • 1贺立新,张来平,张涵信.任意单元间断Galerkin有限元计算方法研究[J].空气动力学学报,2007,25(2):157-162. 被引量:15
  • 2Baker TJ.Mesh generation:Art or science? Progress in Aerospace Sciences,2005,41:29-63.
  • 3Hughes TJR,Brooks A.A Multidimensional Upwind Scheme with No Crosswind Diffusion.Finite Element Methods for Convection Dominated Flows,New York:ASME,1979.
  • 4Hughes TJR.Recent progress in the development and understanding of SUPG methods with special reference to the compressible Euler and Navier-Stokes equations.International Journal for Numerical Methods in Fluids,1987,7:1261-1275.
  • 5Donea J.A Taylor-Galerkin method for convective transport problems.International Journal for Numerical Methods in Engineering,1984,20:101-120.
  • 6Donea J,Quartapelle L,Selmin V.An analysis of time discretization in the finite element solution of hyperbolic problems.Journal of Computational Physics,1987,70:463-499.
  • 7Cockburn B,Hou S,Shu CW.TVD Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅳ:The multidimensional case.Math Comp,1990,54:545-581.
  • 8Cockburn B,Lin SY,Shu CW.TVD Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅲ:One dimensional systems.J Comput Phys,1989,84:90-113.
  • 9Cockburn B,Shu CW.TVD Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws Ⅱ:General framework.Math Comp,1989,52:411-435.
  • 10Cockburn B,Shu CW.The P1-RKDG method for twodimensional Euler equations of gas dynamics.ICASE Report No.91-32,1991.

共引文献27

同被引文献61

  • 1蔚喜军,周铁.流体力学方程的间断有限元方法[J].计算物理,2005,22(2):108-116. 被引量:25
  • 2贺立新,张来平,张涵信.间断Galerkin有限元和有限体积混合计算方法研究[J].力学学报,2007,39(1):15-22. 被引量:28
  • 3贺立新,张来平,张涵信.任意单元间断Galerkin有限元计算方法研究[J].空气动力学学报,2007,25(2):157-162. 被引量:15
  • 4Wang ZJ. High-order methods for the Euler and Navier-Stokes equations on unstructured grids. Progress in Aerospace Sciences, 2007, 43(1): 1-41.
  • 5Bassi F, Rebay S. A high-order accurate discontinuous finite ele- ment method for the numerical solution of the compressible Navier-Stokes equations. Journal of Computational Physics, 1997, 131(2): 267-279.
  • 6Bassi F, Crivellini A, Rebay S, et al. Discontinuous Galerkin so- lution of the Reynolds-averaged Navier-Stokes and κ-ω turbulence model equations. Computers & Fluids, 2005, 34(2): 507-540.
  • 7Cockbum B, Shu C. The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems. Journal of Computational Physics, 1998, 141(2): 199-224.
  • 8Cockbum B, Shu C. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM Journal on Nu- mericalAnalysis, 1998, 35(6): 2440-2463.
  • 9Nguyen NC, Persson P, Peraire J. RANS solutions using high order discontinuous Galerkin methods. In: 45th AIAA Aerospace Sci- ences Meeting, AIAA 2007-914, 2007, 11080-11095.
  • 10Luo H, Xia YD, Li S J, et al. A Hermite WENO reconstruction-based discontinuous Galerkin method for the Euler equations on tetrahe- dral grids. Journal of Computational Physics, 2012, 231(16): 5489- 5503.

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部