摘要
通过比较紧致格式和间断Galerkin(DG)格式,提出了"静态重构"和"动态重构"的概念,对有限体积方法和DG有限元方法进行统一的表述.借鉴有限体积的思想,发展了基于"混合重构"技术的一类新的DG格式,称之为间断Galerkin有限元/有限体积混合格式(DG/FV格式).该类混合格式通过适当地扩展模板(拓展至紧邻单元)重构单元内的高阶多项式分布,在提高精度的同时,减少了传统DG格式的计算量和存储量.通过典型一维和二维标量方程的计算发现新的混合格式在有些情况下具有超收敛(superconvergence)性质.
A CLASS OF DISCONTINUOUS GALERKIN/FINITE VOLUME HYBRID SCHEMES BASED ON THE"STATIC RE-CONSTRUCTION"AND"DYNAMIC RE-CONSTRUCTION"Zhang Laiping^(*,+,2)) Liu Wei~+ He Lixin~+ Deng Xiaogang^(*,+) *(State Key Laboratory of Aerodynamics,Mianyang 621000,China) +(China Aerodynamics Research and Development Center,Mianyang 621000,China)
By comparing the compact finite difference schemes and discontinuous Galerkin(DG) methods, the concepts of "static re-construction" and "dynamic re-construction" are proposed for high-order numerical schemes.Based on the new concept of "hybrid re-construction",a novel class of DG/finite volume hybrid schemes(DG/FV schemes) is presented.In our DG/FV schemes,the lower-order derivatives are computed locally in a cell by traditional DG schemes(called as "dynamic re-construction"),while the higher-order derivatives are constructed by the "static re-construction" of finite volume schemes,using the known lower-order derivatives in the cell itself and in the neighbor cells.The DG/FV hybrid schemes can reduce the CPU time and storage memory greatly than the traditional DG schemes with the same order of accuracy,and can be extended directly for unstructured and hybrid grids as the DG and/or FV methods.The DG/FV hybrid schemes are applied for 1D and 2 D scalar conservation law.The numerical results demonstrate the accuracy, the efficiency,and the super-convergence property in our third-order DG/FV hybrid schemes.
出处
《力学学报》
EI
CSCD
北大核心
2010年第6期1013-1022,共10页
Chinese Journal of Theoretical and Applied Mechanics
基金
国家重点基础研究发展计划(973)资助项目(2009CB723802)
国家自然科学基金资助项目(91016011
11028205)~~
关键词
DG有限元法
有限体积法
静态重构
动态重构
混合格式
discontinuous Galerkin method finite volume method static construction dynamic construction hybrid scheme