期刊文献+

Increasing Success Probability of a Probabilistic Quantum Teleportation

Increasing Success Probability of a Probabilistic Quantum Teleportation
下载PDF
导出
摘要 The probabilistic quantum teleportation scheme [Phys. Lett. A 305 (2002) 12] is improved via two seemingly different methods (i.e., the usual aneilla method and the so-called Kraus method), respectively. The essence of the improvements is to fetch a part from the residues so that the success probability is accordingly increased. The two improved versions and a similar protocol proposed by Li et al. [Phys. Rev. A 61 (2000) 034301] are compared mutually and discussed. It is found that they are equally efficient and can reach the success probability threshold determined by the inherent entanglement of the quantum channel.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第12期1015-1018,共4页 理论物理通讯(英文版)
基金 Supported by the Program for New Century Excellent Talents at the University of China under Grant No.NCET-06-0554 the National Natural Science Foundation of China under Grant Nos.10975001,60677001,10747146,and 10874122 the Science-Technology Fund of Anhui Province for Outstanding Youth under Grant No.06042087 the General Fund of the Educational Committee of Anhui Province under Grant No.2006KJ260B the Natural Science Foundation of Guangdong Province under Grant Nos.06300345 and 7007806 the Talent Foundation of High Education of Anhui Province for Outstanding Youth under Grant No.2009SQRZ018
关键词 probabilistic quantum teleportation success probability ancilla Kraus measurement 成功概率 量子隐形传输 量子隐形传态 大肠杆菌 克劳斯法 量子纠缠 残留物 物理
  • 相关文献

参考文献36

  • 1C.H. Bennett, et al., Phys. Rev. Lett. 70 (1993) 1895.
  • 2L. Vaidman, Phys. Rev. A 49 (1994) 1473.
  • 3B.S. Shi, Y.K. Jiang, and G.C. Guo, Phys. Lett. A 268 (2000) 161.
  • 4B. Zeng, X.S. Liu, Y.S. Li, and G.L. Long, Commun. Theor. Phys. 38 (2002) 537.
  • 5G. Gordon and G. Rigolin, Phys. Rev. A 73 (2006) 042309.
  • 6P. Agrawal and A.K. Pati, Phys. Lett. A 305 (2002) 12.
  • 7M.Y. Wang and F.L. Yan, Eur. Phys. J. D 54 (2009) 111.
  • 8W.L. Li, C.F. Li, and G.C. Guo, Phys. Rev. A 61 (2000) 034301.
  • 9J. Modlawska and A. Grudka, Phys. Rev. Lett. 100 (2008) 1105023.
  • 10A.K. Pati and P. Agrawal, Phys. Lett. A 371 (2007) 185.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部