期刊文献+

Bcklund Transformation and Multisoliton Solutions in Terms of Wronskian Determinant for (2+1)-Dimensional Breaking Soliton Equations with Symbolic Computation 被引量:1

Bcklund Transformation and Multisoliton Solutions in Terms of Wronskian Determinant for (2+1)-Dimensional Breaking Soliton Equations with Symbolic Computation
下载PDF
导出
摘要 In this paper, two types of the (2+1)-dimensional breaking soliton equations axe investigated, which describe the interactions of the Riemann waves with the long waves. With symbolic computation, the Hirota bilineax forms and Bgcklund transformations are derived for those two systems. Furthermore, multisoliton solutions in terms of the Wronskian determinant are constructed, which are verified through the direct substitution of the solutions into the bilineax equations. Via the Wronskian technique, it is proved that the Bgcklund transformations obtained are the ones between the ( N - 1)- and N-soliton solutions. Propagations and interactions of the kink-/bell-shaped solitons are presented. It is shown that the Riemann waves possess the solitonie properties, and maintain the amplitudes and velocities in the collisions only with some phase shifts.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第12期1059-1066,共8页 理论物理通讯(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No.60772023 the Open Fund under Grant No.BUAASKLSDE-09KF-04l Supported Project under Grant No.SKLSDE-2010ZX-07 of the State Key Laboratory of Software Development Environment,Beijing University of Aeronautics and Astronautics the National Basic Research Program of China (973 Program) under Grant No.2005CB321901 the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.200800130006,Chinese Ministry of Education
关键词 breaking soliton equations Hirota bilinear form B/icklund transformation Wronskian determinant symbolic computation Wronskian行列式 破裂孤子方程 多孤子解 符号计算 孤子相互作用 转化 构造条件 碰撞速度
  • 相关文献

参考文献52

  • 1G.P. Agrawal, Nonlinear Fiber Optics, Academic, New York (2002).
  • 2M.P. Barnett, J.F. Capitani, J. Von Zur Gathen, and J. Gerhard, Int. J. Quantum Chem. 100 (2004) 80.
  • 3W.P. Hong, Phys. Lett. A 361 (2007) 520.
  • 4B. Tian and Y.T. Cao, Phys. Lett. A 340 (2005) 243; 362 (2007) 283.
  • 5Y.T. Gao and B. Tian, Phys. Plasmas 13 (2006) 112901.
  • 6Y.T. Gao and B. Tian, Phys. Plasmas (Lett.) 13 (2006) 120703.
  • 7Y.T. Gao and B. Tian, Phys. Lett. A 349 (2006) 314.
  • 8G. Das and J. Sarma, Phys. Plasmas 6 (1999) 4394.
  • 9B. Tian and Y.T. Gao, Phys. Plasmas 12 (2005) 054701.
  • 10B. Tian and Y.T. Gao, Phys. Lett. A 340 (2005) 449.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部