期刊文献+

Cluster consensus of second-order multi-agent systems via pinning control 被引量:9

Cluster consensus of second-order multi-agent systems via pinning control
原文传递
导出
摘要 This paper investigates the cluster consensus problem for second-order multi-agent systems by applying the pinning control method to a small collection of the agents. Consensus is attained independently for different agent clusters according to the community structure generated by the group partition of the underlying graph and sufficient conditions for both cluster and general consensus are obtained by using results from algebraic graph theory and the LaSalle Invariance Principle. Finally, some simple simulations are presented to illustrate the technique. This paper investigates the cluster consensus problem for second-order multi-agent systems by applying the pinning control method to a small collection of the agents. Consensus is attained independently for different agent clusters according to the community structure generated by the group partition of the underlying graph and sufficient conditions for both cluster and general consensus are obtained by using results from algebraic graph theory and the LaSalle Invariance Principle. Finally, some simple simulations are presented to illustrate the technique.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第12期90-96,共7页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant No. 70571059)
关键词 second-order multi-agent systems cluster consensus pinning control LaSalle invariance principle second-order multi-agent systems, cluster consensus, pinning control, LaSalle invariance principle
  • 相关文献

参考文献24

  • 1Hong Y G, Hu J P and Gao L X 2006 Automatica 42 1177.
  • 2Li Y M and Guan X P 2009 Chin. Phys. B 18 3355.
  • 3Hu J P and Yuan H W 2009 Chin. Phys. B 18 3777.
  • 4Peng L Q, Zhao Y, Tian B M, Zhang J, Wang B H, Zhang H T and Zhou T 2009 Phys. Rev. E 79 026113.
  • 5Qi W, Xu x J and Wang Y H 2009 Chin. Phys. B 18 4217.
  • 6Guo W L, Austin F, Chen S H and Sun W 2009 Phys. Lett. A 373 565.
  • 7Saber R O 2006 IEEE Trans. Automat. Control 51 401.
  • 8Saber R O and Murray R M 2004 IEEE Trans. Automat. Control 49 1520.
  • 9Moreau L 2005 IEEE Trans. Aurora. Control 50 169.
  • 10Ren W and Beard R W 2005 IEEE Trans. Automat. Control 50 655.

同被引文献43

  • 1俞辉,蹇继贵,王永骥.多智能体时滞网络的加权平均一致性[J].控制与决策,2007,22(5):558-561. 被引量:30
  • 2Jadbabaie A, Lin J, Morse A S. Coordination of Groups of Mobile Autonomous Agents Using Nearest Neighbor Rules[J]. IEEE Transactions on Automatic Control, 2003, 48(6), 988-1001.
  • 3Fax J A, Murray R M. Information Flow and Cooperative Control of Vehicle Formations[J]. IEEE Transactions on Automatic Control, 2004, 49(9): 1465-1476.
  • 4Kawasaki H, Ueki S, Ito S. Decentralized Adaptive Coordinated Control of Multiple Robot Arms Without Using a Force Sensor[J]. Automatica, 2006, 42(3): 481-488.
  • 5Kuramoto Y. Chemical Oscillations, Waves and Turbulence [M]. Berlin: Springer Verlag, 1984: 99-103.
  • 6Ren Wei. Synchronization of Coupled Harmonic Oscillators with Local Interaction[J]. Automatica, 2008, 44(12): 3195-3200.
  • 7Su Housheng, Wang Xiaofan, Lin Zongli. Synchronization of Coupled Harmonic Oscillators in A Dynamic Proximity Network[J]. Automatica, 2009, 45(10): 2286-2291.
  • 8Cai Chaohong, Tuna S E. Synchronization of Nonlinearly Coupled Harmonic Oscillators[C]//American Control Conference. Baltimore: IEEE, 2010: 1767-1771.
  • 9Zhou Jin, Zhang Hua, Xiang Lan, et al. Synchronization of Coupled Harmonic Oscillators with Local Instantaneous Interaction[J]. Automatica, 2012, 48(8): 1715-1721.
  • 10Zhang Hua, Zhou Jin. Synchronization of Sampled-Data Coupled Harmonic Oscillators with Control Inputs Missing [J]. System & Control Letters, 2012, 61(12): 1277-1285.

引证文献9

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部