期刊文献+

噪声相关性偏态分布的最佳模型

Optimal model for the asymmetrical distribution of noise correlation
原文传递
导出
摘要 提出了用对数正态分布描述噪声相关性偏态分布的最佳模型。首先通过理论分析和实验发现,在(0,1]区间β分布、Γ分布和对数正态分布可用于描述噪声相关性的偏态分布;然后分别利用这3种分布的概率密度函数(PDF)模拟实际的噪声相关性偏态分布曲线,曲线的形态与实际的噪声相关性偏态分布形态的相似程度的比较表明,采用对数正态分布描述噪声相关性偏态分布的效果最佳;最后利用最大熵方法证明了模型的最佳性。实验结果表明,本文提出的模型与另外两种模型相比,可使最小错误率降低70%以上。 The optimal model for the asymmetrical distribution of noise correlation is proposed using the logarithmic normal distribution.It is found that beta distribution,gamma distribution and logarithmic normal distribution can be used to describe the asymmetrical distribution of noise correlation within(0,1] by the theoretical analysis and experiments,and then curves of the actual asymmetrical distribution of noise correlation are simulated by using the three probability density functions respectively.It is explained that the best results can be achieved using the logarithmic normal distribution according to the comparison between the simulated and actual curves of asymmetrical distribution of noise correlation,and it is proved by the maximum entropy method.Experimental results show that this model can reduce the least false rate over 70% compared with the other models.
作者 崔夏荣
出处 《光电子.激光》 EI CAS CSCD 北大核心 2010年第12期1877-1880,共4页 Journal of Optoelectronics·Laser
基金 福建省教育厅科技基金资助项目(JA08245)
关键词 噪声相关性 偏态分布 概率密度函数(PDF) 最大熵方法 noise correlation asymmetrical distribution probability density function maximum entropy method
  • 相关文献

参考文献3

二级参考文献12

  • 1陈君,方志良,杨勇,刘福来.基于光学/数字图像处理的平面图像立体化技术[J].光电子.激光,2005,16(12):1510-1513. 被引量:11
  • 2曾嘉亮.Gamma校正的快速算法及其C语言实现[J].信息技术,2006,30(4):82-84. 被引量:5
  • 3段瑞玲,李玉和,李庆祥,贾惠波.非线性阈值自调整小波图像去噪方法研究[J].光电子.激光,2006,17(7):871-874. 被引量:20
  • 4汪太月,李志明.一种广义高斯分布的参数快速估计法[J].工程地球物理学报,2006,3(3):172-176. 被引量:38
  • 5Geradts Z, Bijhold J, Kieft M, et al. Methods for identification of images acquired with digital cameras [ A ]. In: Proceedings of SPIE Conference on Enabling Technologies for Law Enforcement and Security [ C], San Diego, CA,USA, 2001:505 -512.
  • 6Bayram S, Sencar H, Memon N, et al. Source camera identification based on CFA interpolation [ A ]. In: Proceedings of IEEE International Conference on Image Processing [ C ] , Geneva, Switzerland, 2005 : 69 - 72.
  • 7Lukas J, Fridrich J, Goljan M. Digital camera identification from sensor pattern noise [ J]. IEEE Transactions on Information Foresics and Security, 2006, 1 (2) : 205 - 214.
  • 8Chang S G, Yu B, Vetterli M. Spatially adaptive wavelet thresholding with context modeling for image denoising [ J]. IEEE Transactions on Image Processing, 2000, 9(9) : 1522 - 1531.
  • 9Holst G C. CCD arrays, Cameras, and Displays [ M ]. Winter Park, FL, USA, ancl Bellingham, WA, USA : JCD & SPIE, 1998 : 79- 144.
  • 10Dominguez-Molina J A, Gonzalez-Farlas G. A Practical Procedure to Estimate the Shapeparameter in the Generalized Gaussian Distribution [ EB/OL ]. http://www. cimat. mx/teportes/enlinea/I-01-18_ eng. pdf.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部