摘要
对任意的非负整数n,著名的Smarandache LCM函数SL(n)定义为最小的正整数k,使得n/[1,2,…,k],其中n/[1,2,…,k]表示1,2,…,k的最小公倍数.而函数U(n)定义为最小的正整数k,使得n≤k(2k-1),即U(n)=min{k∶n≤k(2k-1),k∈N}.通过利用初等和解析方法,研究复合函数SL(U(n))的均值,得到了一个有趣的渐近公式.
For any positive integer n,the famous Smarandache LCM function SL(n) is defined as the smallest positive integer k such that n/[1,2, ……, k], where n/[1,2, ……, k] denote the least common multi- plies of 1,2 ---, k. And the function U (n) is defined as the smallest positive integer k such that n≤ k(2k-1). That is U(n)-----min{k : n≤k(2k--1),k∈N}. The main purpose of this paper is to study the mean value properties of the composite function SL(U(n)) and to give a sharper asymptotic formula by the elementary and analytic methods.
出处
《甘肃科学学报》
2010年第4期40-42,共3页
Journal of Gansu Sciences
基金
陕西省教育厅专项科研计划项目(07JK430)