期刊文献+

量子棒中极化子激发态的性质 被引量:1

Properties of excited state of polaron in quantum rods
下载PDF
导出
摘要 给出了具有椭球边界量子棒经过坐标变换成球形边界的哈密顿量。采用线性组合算符和幺正变换的方法研究了在非均匀抛物限制势下量子棒中弱耦合极化子的振动频率λ、第一内部激发态能量E_1、激发能量△E和从激发态到基态跃迁谱线频率ω随椭球的纵横比e'、电子-声子耦合强度α和横向和纵向有效受限长度l_p和lz的变化关系。数值计算结果表明:振动频率、第一内部激发态能量、激发能量和跃迁谱线频率随横向和纵向有效受限长度的减少而迅速增大。第一内部激发态能量随电子-声子耦合强度的增加而减少。振动频率随椭球纵横比的增加而减少。当e'>1时,激发能量和跃迁谱线频率随椭球纵横比的增加而增加。当e'<1时,随椭球纵横比的减少而增大。当e'=1时,它们取极小值。 Based on a coordinate transformation, the boundary potential of a quantum rods was changed from the ellipsoidal form into an spherical one. The properties of the vibrational frequency, first internal excited state energy, excitation energy and frequency of transition spectral line between first internal excited state and ground state of weak-coupling polaron in a quantum rod in a parabolic potential are studied by using linear combination operator and unitary transformation methods. Relations of the vibrational frequency, first internal excited state energy, excitation energy and frequency of transition spectral line of polaron with transverse and longitudinal effective confinement length, aspect ratio of the ellipsoid and electron-phonon coupling strength were derived. Numerical calculation results show that the vibrational frequency, the first internal excited state energy, excitation energy and frequency of transition spectral line increase rapidly with decreasing transverse and longitudinal effective confinement length. The vibrational frequency and first internal excited state energy are decreasing functions of the aspect ratio of ellipsoid and electron-phonon coupling strength, respectively. The excitation energy and frequency of transition spectral line are increasing functions of the aspect ratio when e' 〉 1, whereas it is decreasing function of one when e' 〈 1. When e' = 1, the excitation energy and frequency of transition spectral line have minimum values.
出处 《量子电子学报》 CAS CSCD 北大核心 2010年第6期743-748,共6页 Chinese Journal of Quantum Electronics
关键词 光电子学 低维结构 量子棒 线性组合算符 极化子 激发态 纵横比 optoelectronics low dinlensional structure quantum rods linear combination operator polaron excited state aspect ratio
  • 相关文献

参考文献18

  • 1Hu J T,Li L S,Yang W D,et al.Linearly polarized emission from colloidal semiconductor quantum rods[J].Science,2001,292:2060-2063.
  • 2Kan S H,Mokari T,Rothenberg E,et al.Synthesis and size-dependent properties of zinc-blends semiconductor quantum rods[J].Nature Materials,2003,2:155-158.
  • 3Bruchez M,Moronne M,Gin P,et al.Semiconductor nanocrystals as fluorescent biological labels[J].Science,1998,281:2013-2016.
  • 4Klimov V I,Mikhailovsky A A,et al.Optical gain and stimulated emission in nanocrystal quantum dots[J].Science,2000,290:314-317.
  • 5Sek G,Podemski P,Misiewicz J,et al.Photoluminescence from a single InGaAs epitaxial quantum rod[J].Appl.Phys.Lett.,2008,92(2):021901-1.
  • 6Lundeberg M B,Shegelski M R A.Long tipping times of a quantum rod[J].Can.J.Phys.,2006,84(1):19-36.
  • 7Shweky I,Aharoni A,Mokari T,et al.Seeded growth of InP quantum rods using indium acetate and myristic acid[J].Materials Science and Engineering C 2006,26:788-794.
  • 8Bruhn B,Valenta J,Linnros J.Controlled fabrication of individual silicon quantum rods yielding high intensity,polarized light emission[J].Nanotechnology,2009,20:505301-5.
  • 9Persano A,Leo G,Manna L,et al.Charge carrier transport in thin films of colloidal CdSe quantum rods[J].J.Appl.Phys.,2008,104:074306-1-6.
  • 10Li X Z,Xia J B.Electronic structure and optical properties of quantum rods[J].Phys.Rev.B,2002,66(11):115316-1-6.

二级参考文献21

  • 1于毅夫,尹辑文,肖景林.温度对抛物量子点中弱耦合束缚磁极化子的影响[J].发光学报,2006,27(4):442-446. 被引量:4
  • 2Chen C Y, Jin P W, Li W S, et al. Thickness effect on impurity-bound polaronic energy levels in a parabolic quantum dot in magnetic fields [J]. Phys. Rev. B, 1997, 56(23): 14913-14916.
  • 3Petukhov A G, Foyeel M. Bound magnetic polaron hopping and giant magnetoresistance in magnetic semiconductors and nanostructure [J]. Phys. Rev. B, 2000, 62(1): 520-531.
  • 4Nguyen V L, Nguyen M T, Nguyen T D. Magnetic field effects of the binding energy of hydrogen impurites in quantum dots with parabolic confinements [J]. Phys. B, 2000, 292(1-2): 153-159.
  • 5Corella M A, Rosas R. Hydrogenic impurities in spherical quantum dots in a magnetic field [J]. J. Appl. Phys., 2001, 89(5): 2333-2339.
  • 6Kandemir B S, Cetin A. Ground-and first excited state energies of impurity magnetopolaron in an anisotropic quantum dot [J]. Phys. Rev. B, 2002, 65(5): 054303-1-11.
  • 7Jacak L, krasnyj J, Jacak D, et al. Magnetopolaron in a weakly elliptical InAs/GaAs quantum dot [J]. Phys. Rev. B, 2003, 67(3): 035303-1-13.
  • 8Khamkhami J E, Feddi E, Assaid E, et al. Magneto-bound polaxon in CdSe spherical quantum dots: strong coupling approach [J]. Phys. E, 2005, 25: 366-373.
  • 9Chert S H, Xiao J L. Temperature effect on impurity-bound polaronic energy levels in a parabolic quantum dot in magnetic fields [J]. Int. J. Mod. Phys. B, 2007, 21(32): 5331-5337.
  • 10Li Yuxian Liu Zengjun Di Bing et al.The influence of magnetic field on the binding energy of a hydrogenic impurity in cubic quantum dots .河北师范大学学报,2002,26(4):359-361.

共引文献6

同被引文献4

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部