期刊文献+

用INSGA-Ⅱ进化NPCs的复杂行为

Evolving NPCs complex behavior via INSGA-Ⅱ
下载PDF
导出
摘要 目前游戏中NPCs多目标行为进化是一个非常复杂的问题。对此建立了NPCs多目标优化的数学模型,并提出了一种NSGA-Ⅱ的改进算法——INSGA-Ⅱ。该算法在进行精英选择时,采用了基于K-均值聚类的方法联合了不同等级之间的个体进行集合划分,然后从不同的集合中选择下一代个体,从而更好地保持了种群的多样性。通过实例比较证明,在玩家和NPCs作战的游戏场景下,INSGA-Ⅱ能够得到NPCs复杂多目标控制问题的Pareto最优解,而且比NSGA-Ⅱ表现出更好的收敛性和多样性。 At present,NPCs multi-objective behavior evolution is a very complex problem in the games.In this paper,a multi-objective optimization model for NPCs is established and an Improved NSGA-Ⅱ algorithm-INSGA-Ⅱ is proposed.The algorithm is based on K-means clustering method which combines the individuals in different Pareto ranks for partition of sets,then selects next generation individuals from different clustering sets to maintain diversity of populations,finally,INSGA-Ⅱ and NSGA were compared in the specific game domain in which player and NPCs fight,INSGA-Ⅱ was capable of getting Pareto optimal solutions to NPCs complex multi-objective control problem and get better convergence and population diversity.
出处 《沈阳航空工业学院学报》 2010年第5期57-62,共6页 Journal of Shenyang Institute of Aeronautical Engineering
基金 辽宁省教育厅科学技术研究项目(项目编号:2008558) 中航一集团航空科学基金(项目编号:2008ZC54008) 沈阳市科学技术计划项目(项目编号:1091185-1-00)
关键词 游戏 NPCs INSGA-Ⅱ 多模式行为 computer game NPCs INSGA-Ⅱ multi-model behavior
  • 相关文献

参考文献9

  • 1J. K. Olesen, G. N. Yannakakis, J. Hallam. Real-time challenge balance in an RTS game using rtNEAT[ A]. In Proceedings of the IEEE. Symposium on Computational Intelligenoe and Games [ C ]. 2008.
  • 2S. Kalyanakrishnan and P. Stone. An empirical analysis of value function - based and policy search reinforcement learning [ A ]. Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems (AAMAS)[ C]. 2009.
  • 3De Jong, Edwin D. , Watson, et al. Reducing Bloat and Promoting Diversity using Multi -Objective Methods[ A]. Proceedings of GECCO 2001 [ C] ,2001.
  • 4Hisashi Tamaki, Hajime Kita, Shigenobu Kobayashi. Multi -objective optimization by genetic algorithms[ A]. A Review. International Conference on Evolutionary Computation [ C]. 1996:517 - 522.
  • 5Yau, Y. J, Teo, J. Anthony, P. Pareto evolution and co - evolution in cognitive game AI synthesis[J].EMO 2007,2007,4403 : 227 - 241.
  • 6Kenneth O. Stanley, Bobby D. Bryant, Risto Miikkulainen. Evolving neural network agents in the NERO video game [ A]. Proceedings of the IEEE 2005 Symposium on Computational Intelligence and Games (CIG05) [C]. Piscataway: NJ: IEEE Press, 2005:182 - 189.
  • 7Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA -II[ J]. IEEE Transactions on Evolutionary Computation, 2002, 6 (2) :182-197.
  • 8蔡佳,佟刚.基于神经网络的轴类损伤检测研究[J].沈阳航空工业学院学报,2009,26(1):42-45. 被引量:3
  • 9杜玲,谭俏男.一种P2PMMOG带有负载均衡的事件分发算法[J].沈阳航空工业学院学报,2009,26(2):34-37. 被引量:2

二级参考文献12

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部