期刊文献+

基于聚类的匿名化隐私保护技术研究 被引量:2

Research on Anonymous Privacy-Preserving Techniques Based on Clustering
原文传递
导出
摘要 目前多数匿名化隐私保护技术由于其严重依赖于预先定义的泛化层或属性域上的全序关系,导致匿名结果产生很高的信息损失,数据的可用性降低。通过定义距离和代价度量函数,提出基于聚类算法构造l-多样性匿名隐私保护模型。实验结果表明,该方法可减少信息损失,提高发布数据的可用性。 At present, most anonymous privacy - preserving techniques suffer from high information loss and low usability that is mainly due to reliance on pre - defined generalization hierarchies or total order imposed on each attribute domain. Through defining distance and cost function, the paper provides a kind of I - diverse anonymous privacy - preserving mod- el based on clustering algorithm. Experiment results show that the method can improve the usability of the released data while reducing the information loss.
作者 王平水
出处 《现代图书情报技术》 CSSCI 北大核心 2010年第11期53-58,共6页 New Technology of Library and Information Service
基金 教育部人文社会科学青年基金项目"文本挖掘技术在判定论文抄袭中的应用研究"(项目编号:07JC870006) 安徽省高等学校自然科学基金重点项目"集成隐私保护机制的安全数据库研究"(项目编号:KJ2010A003)的研究成果之一
关键词 数据发布 隐私保护 K-匿名 1-多样性 聚类 Data release Privacy - preserving k - Anonymity 1 - Diversity Clustering
  • 相关文献

参考文献25

  • 1Samarati P, Sweeney L. Generalizing Data to Provide Anonymity When Disclosing Information (Abstract) [C ]. In: Proceedings of the 17th ACM SIGACT - SIGMOD - S1GART Symposium on Principles of Database Systems, Seattle, Washington, United States. New York : ACM Press, 1998 : 188.
  • 2Sweeney L. k - Anonymity : A Model for Protecting Privacy [ J ].International Journal of Uncertainty, Fuzziness and Knowledge - based Systems ,2002,10 ( 5 ) :557 - 570.
  • 3Sweency L. Achieving k -Anonymity Privacy Protection Using Generalization and Suppression [ J ]. International Journal of Uncertainty, Fuzziness and Knowledge - based Systems, 2002, 10 (5) : 571 -588.
  • 4Meyerson A, Williams R. On the Complexity of Optimal k - Anonymity [ C ]. In : Proceedings of the 23 rd A CM SIGA CT - SIGMOD - SIGART Symposium on Pritwiples of Database Systems. New York : ACM Press, 2004:223 - 228.
  • 5Aggarwal G, Feder T, Kenthapadi K, et al. Achieving Anonymity via Clustering[ C ]. In: Proceedings of the 25th ACM SIGMOD - S1GACT - SIGART Symposium on Principles of Database Systems. New York: ACM Press, 2006:153 - 162.
  • 6Iyengar V S. Transforming Data to Satisfy Privacy Constraints[ C ]. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York : ACM Press, 2002 :279 - 288.
  • 7Wang K, Yu P, Chakraborty S. Bottom - up Generalization: A Data Mining Solution to Privacy Protection[ C]. In: Proceedings of the 4th IEEE International Conference on Data Mining. Washington DC : IEEE Computer Society, 2004:249 - 256.
  • 8Lefevre K, Dewittd J, Ramakrishnan R. Incognito: Efficient Full - Domain k - Anonymity [ C ]. In : Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data. New York : ACM Press, 2005:49 -60.
  • 9Fung B, Wang K, Yu P. Top - down Specialization for Information and Privacy Preservation [ C ]. In: Proceedings of the 21st IEEE International Conference on Data Engineering. Washington DC: IEEE Computer Society, 2005:205 - 216.
  • 10Bayardo R, Agrawal R. Data Privacy Through Optimal k - Anonymization [ C ]. In : Proceedings of the 21 st International Conference on Data Engineering. Los Alamitos: IEEE Computer Society, 2005:217 - 228.

二级参考文献83

共引文献298

同被引文献29

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部