期刊文献+

基于自组织模糊规则归纳的电子商务客户流失预测 被引量:2

E-BUSINESS CUSTOMER CHURN PREDICTION BASED ON FUZZY RULE INDUCTION
下载PDF
导出
摘要 为提高客户流失预测的精度,构建了基于自组织模糊规则归纳算法FRI(Fuzzy Rule Induction)的电子商务客户流失预测模型。该模型利用数据分组处理技术GMDH(Group method data handling)从训练样本中自动地提取接近于人类自然语言描述的电子商务客户流失模糊规则,进而对测试样本客户流失状态进行判别。采用某网上商场的1500名客户样本进行电子商务客户流失预测实证研究,结果表明,该方法对测试样本预测精度达到了90%以上,是一种有效和实用的电子商务客户流失预测工具。 To improve the accuracy of customer churn prediction, Fuzzy Rule Induction (FRI) was applied to E-business customer churn prediction. FRI uses group method of data handling (GMDH) to extract the fuzzy rules from customer data autonomously described in a more natural language to identify customer churn status. Taking 1500 customers in an e-shop as samples, empirical results showed that the forecast accuracy was over 90% on testing samples, proving FRI to be an efficient and practical tool for E-business customer churn prediction.
出处 《计算机应用与软件》 CSCD 2010年第12期44-47,共4页 Computer Applications and Software
基金 国家自然科学基金项目(70471074) 广东省自然科学基金项目(9452902001004060) 国家博士后科学基金一等项目(20100470008)
关键词 自组织模糊规则归纳 数据分组处理 客户流失预测 电子商务 Fuzzy rule induction Group method of data handling(GMDH) Customer churn prediction E-business
  • 相关文献

参考文献11

  • 1赵宇,李兵,李秀,刘文煌,任守榘.基于改进支持向量机的客户流失分析研究[J].计算机集成制造系统,2007,13(1):202-207. 被引量:41
  • 2http://tech.sina.com.cn /i/ 2009 01 24/ 220927 77 210.shtml.
  • 3Allemby G M,Peter J L.Modeling Household Purchase Behavior with Logistic Normal Regression[J].Journal of American Statistics Association,2005,189 (12):1218-1231.
  • 4Yi Ming,Hui Wan,Lei Li,et al.Multi-dimensional model based clustering for user-behavior mining in telecommunications industry[C]//Proceeding of the Third International Conference on Machine Learning and Cybernetics,Shanghai,2004:26-29.
  • 5Baesens,Bart,Verstraeten,et al.Bayesian network classifiers for identifying the slope of the customer lifecycle of long-life customers[J].European Journal of Operational Research,2004,156(2):508-523.
  • 6Sum Kim,Kyung-Shik Shin,Kyungdo Park.An application of support vector machines for customer churn analysis:redit card case[C]//Advances in Natural Computation.First International Conference,ICNC 2005:636-647.
  • 7Au W,Chen K C C,Yao X.A novel evolutionary data mining algorithm with applications to churn prediction[J].Evolutionary Computation,IEEE Transactions,2003,7(6):532-545.
  • 8钱苏丽,何建敏,王纯麟.基于改进支持向量机的电信客户流失预测模型[J].管理科学,2007,20(1):54-58. 被引量:25
  • 9盛昭瀚,柳炳祥.客户流失危机分析的决策树方法[J].管理科学学报,2005,8(2):20-25. 被引量:49
  • 10朱帮助,张秋菊.电子商务客户流失三阶段预测模型[J].中国软科学,2010(6):186-192. 被引量:11

二级参考文献61

共引文献104

同被引文献25

  • 1仇国芳,陈劲.模糊信息表决策规则获取与属性约简方法[J].浙江大学学报(工学版),2006,40(4):567-571. 被引量:4
  • 2Radzikowska A M,Kerre E E.A Comparative Study of Fuzzy Rough Sets[J].Fuzzy Sets and Systems,2002,126:137-155.
  • 3Atanassov K.Intuitionistic fuzzy sets[J].Fuzzy Sets and Systems,1986,20(1):87-96.
  • 4Li D,Cheng C.New similarity measures of intuitionistic fuzzy sets and applications to pattern recognitions[J].Pattern Recognition Letter,2002,23:221-225.
  • 5Chunche Huang,Tzuliang(Bill)Tseng,Yuneng Fan,et al.Alternative rule induction methods based on incremental object using rough set theory[J].Applied Soft Computing 2013,13:372-389.
  • 6Mingchang Lee,To Chang.Rule Extraction Based on Rough Fuzzy Sets in Fuzzy Information Systems[J].Transactions on CCI III,LNCS6560,2011,115-127.
  • 7Bing Huang,Dakuan Wei,Huaxiong Li,et al.Using a rough set model to extract rules in dominance-based interval-valued intuitionistic fuzzy information systems[J].Information Sciences,2013,221:215-229.
  • 8路艳丽,雷英杰,华继学.基于直觉模糊粗糙集的属性约简[J].控制与决策,2009,24(3):335-341. 被引量:25
  • 9代逸生,沈培兰,孙红霞.基于Pareto/NBD模型的电子商务网站客户流失预测研究[J].科学技术与工程,2010,10(27):6792-6795. 被引量:7
  • 10朱帮助.基于SMC-RS-LSSVM的电子商务客户流失预测模型[J].系统工程理论与实践,2010,30(11):1960-1967. 被引量:26

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部