期刊文献+

支持向量机与时间序列预测综述 被引量:14

AN OVERVIEW ON SUPPORT VECTOR MACHINE AND TIME SERIES PREDICTION
下载PDF
导出
摘要 对近年来基于支持向量机的时间序列预测算法研究现状进行了综述。时间序列预测是一个极其富有挑战性的研究领域,具有广阔的应用前景,同时支持向量算法是有着巨大潜力的工具,必将在不久的将来在该领域取得突破性的进展。考察了支持向量算法中数据集和预处理、核函数、参数选定、预测评价指标以及支持向量算法总体框架的改进等几个方面研究状况,认为当今研究趋向于支持向量算法与各种人工智能算法的结合。 This paper presents an overview on the study of algorithm for time series prediction based on support vector machine in recent years. Time series prediction is an extremely challenging research area with broad application prospects; while support vector algorithm is a tool with great potential and will definitely take a breakthrough in this area in the near future. After investigating the current researches on data sets,pre-processing,kernel function,parameter selection,and predictive evaluation indicators as well as framework of support vector algorithm,the conclusion we can draw is that the current study tends to combine the support vector algorithm with a variety of artificial intelligent algorithms.
出处 《计算机应用与软件》 CSCD 2010年第12期127-129,157,共4页 Computer Applications and Software
基金 上海师范大学产学研项目(DCL200801)
关键词 SVM 时间序列 预测 SVM Time series Prediction
  • 相关文献

参考文献12

  • 1唐庆银.新编统计学原理[M].立信会计出版社,1999:158.
  • 2霍俊.实用预测学,第三册.时间序列预测分析.
  • 3Phiroz Bhagat.Pattern Recognition in Industry[M].International Strategy Engines.New Jersey,USA.Chapter 9:83-87.
  • 4Vapnik V,Golowich S,Smola A.Support vector machine for function approximation.regression estimation,and signal processing,Adv.Neural Inform.Process.Syst.9(1996) 281-287.
  • 5Tay F E H,Cao L J.Application of support vector machines in financial time series forecasting.Omega,2001,29:309-317.
  • 6Cheng Lung Huang,Cheng Yi Tsai.A hybrid SOFM-SVR with a filter-based feature selection for stock market forecasting[J].Expert Systems with Applications,2009,36:1529-1539.
  • 7Ling Bing Tang,Ling Xiao Tang,Huan Ye Sheng.Forecasting volatility based on wavelet support vector machine[J].Expert Systems with Applications,2009,36:2901-2909.
  • 8Wei Chiang Hong.Rainfall forecasting by technological machine learning models[J].Applied Mathematics and Computation,2008,200:41-57.
  • 9Shian Chang Huang.Online option price forecasting by using unscented Kalman filters and support vector machines[J].Expert Systems with Applications,2008,34:2819-2825.
  • 10Reshma Khemchandani,Jayadeva,Suresh Chandra.Regularized least squares fuzzy support vector regression for financial time series forecasting[J].Expert Systems with Applications,2009,36:132-138.

同被引文献151

引证文献14

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部