期刊文献+

FARIMA网络流量预测模型的研究与改进 被引量:3

Research and Improvement of FARIMA Network Traffic Prediction Model
下载PDF
导出
摘要 网络流量模型以考察网络流量特性为出发点,以数学理论为基础,通过建立数学模型来反映真实的网络流量及其变化趋势。传统的泊松模型在现代数据网络中已经不再适用,不能真实地反映流量的趋势。但是自从网络流量的自相似性被发现后,网络流量的自相似模型不断涌现。文中应用了既能反映长相关性又能反映短相关性的FARIMA模型对真实网络流量数据进行了分析预测,经过研究和实践的验证,对模型进行了改进,提出了SFARIMA网络流量预测模型。 By collecting and analyzing the characteristics of network traffic,network traffic models can reflect the real network traffic using mathematical methods.The traditional Poisson model is not suitable in the modern data networks which can not reflect the real flow trend.However,since Hosking discovers the self-similarity of network traffic,self-similar models have continued to emerge. This article focus on researching network traffic data analysis and forecasting using FARIMA model.The experiment data is quite similar to the real one,because it's not only LRD but also SRD.And the model has been improved,this article puts forward a new network traffic forecasting model called SFARIMA.
作者 陈子文 王攀
出处 《计算机技术与发展》 2010年第12期54-56,188,共4页 Computer Technology and Development
基金 国家高技术研究发展计划(863)资助项目(2009AA01Z202 2009AA01Z212)
关键词 自相似 FARIMA 时序模型 self-similarity FARIMA timing model
  • 相关文献

参考文献12

二级参考文献62

共引文献176

同被引文献34

  • 1洪飞,吴志美.基于小波的多尺度网络流量预测模型[J].计算机学报,2006,29(1):166-170. 被引量:46
  • 2李捷,刘瑞新,刘先省,韩志杰.一种基于混合模型的实时网络流量预测算法[J].计算机研究与发展,2006,43(5):806-812. 被引量:18
  • 3冯海亮,陈涤,林青家,陈春晓.一种基于神经网络的网络流量组合预测模型[J].计算机应用,2006,26(9):2206-2208. 被引量:28
  • 4李士宁,闫焱,覃征.基于FARIMA模型的网络流量预测[J].计算机工程与应用,2006,42(29):148-150. 被引量:23
  • 5刘嘉煜,王公恕.应用随机过程[M].北京:科学出版社,2004.208-209.
  • 6Feng Huifang,Shu Yantai. A robust system for accurate real- time summaries of Internet traffic [ J ]. S1GMETRICS Perform- ance Evaluation Review, 2005,33 ( 1 ) : 85-96.
  • 7Constantinou F, Mavrommatis P. Study on Network Traffic Pre- diction Techniques [ C ]//Proceedings of 2005 International Conference. [ s. 1. ] : [ s. n. ] ,2005:23-26.
  • 8Qiao Y, Skicewicz J, Dinda P. An empirical study of the multi-scale predictability of network traffic [ C ]//Proceedings of 13th IEEE International Symposium on High Performance Dis- tributed Computing. Honolulu : IEEE Press ,2004:66-76.
  • 9Huang N E, Shen N Z, Long S R. The empirical mode decom- position and the Hilbert spectrum for nonlinear and non-sta- tionary time series analysis[ C ]//Proceedings of the Royal So- ciety. London : [ s. n. ] , 1998:903-915.
  • 10Akaike H. A new look at the statistical identification model [J]. IEEE Trans on Automatic Control, 1974, 19 (6) :716- 723.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部